Files
BloomPatched/src/DebugToolDrivers/Microchip/Protocols/EDBG/AVR/EdbgAvr8Interface.cpp

1979 lines
80 KiB
C++
Raw Normal View History

#include "EdbgAvr8Interface.hpp"
2021-04-04 21:04:12 +01:00
#include <thread>
#include <cassert>
2022-01-16 18:54:58 +00:00
#include <cmath>
2021-04-04 21:04:12 +01:00
#include "src/Services/PathService.hpp"
2023-01-21 14:27:45 +00:00
#include "src/Services/StringService.hpp"
#include "src/Logger/Logger.hpp"
#include "Exceptions/Avr8CommandFailure.hpp"
#include "src/TargetController/Exceptions/DeviceInitializationFailure.hpp"
#include "src/Targets/Microchip/AVR/AVR8/Exceptions/DebugWirePhysicalInterfaceError.hpp"
2021-04-04 21:04:12 +01:00
// Command frames
#include "CommandFrames/AVR8Generic/SetParameter.hpp"
#include "CommandFrames/AVR8Generic/GetParameter.hpp"
#include "CommandFrames/AVR8Generic/ActivatePhysical.hpp"
#include "CommandFrames/AVR8Generic/DeactivatePhysical.hpp"
#include "CommandFrames/AVR8Generic/Attach.hpp"
#include "CommandFrames/AVR8Generic/Detach.hpp"
#include "CommandFrames/AVR8Generic/Stop.hpp"
#include "CommandFrames/AVR8Generic/Step.hpp"
#include "CommandFrames/AVR8Generic/Run.hpp"
#include "CommandFrames/AVR8Generic/RunTo.hpp"
#include "CommandFrames/AVR8Generic/GetDeviceId.hpp"
#include "CommandFrames/AVR8Generic/Reset.hpp"
#include "CommandFrames/AVR8Generic/ReadMemory.hpp"
#include "CommandFrames/AVR8Generic/WriteMemory.hpp"
#include "CommandFrames/AVR8Generic/GetProgramCounter.hpp"
#include "CommandFrames/AVR8Generic/SetProgramCounter.hpp"
#include "CommandFrames/AVR8Generic/DisableDebugWire.hpp"
#include "CommandFrames/AVR8Generic/SetSoftwareBreakpoints.hpp"
#include "CommandFrames/AVR8Generic/ClearAllSoftwareBreakpoints.hpp"
#include "CommandFrames/AVR8Generic/ClearSoftwareBreakpoints.hpp"
#include "CommandFrames/AVR8Generic/SetHardwareBreakpoint.hpp"
#include "CommandFrames/AVR8Generic/ClearHardwareBreakpoint.hpp"
#include "CommandFrames/AVR8Generic/EnterProgrammingMode.hpp"
#include "CommandFrames/AVR8Generic/LeaveProgrammingMode.hpp"
#include "CommandFrames/AVR8Generic/EraseMemory.hpp"
2021-04-04 21:04:12 +01:00
// AVR events
#include "Events/AVR8Generic/BreakEvent.hpp"
2021-04-04 21:04:12 +01:00
namespace DebugToolDrivers::Microchip::Protocols::Edbg::Avr
{
using namespace Targets::Microchip::Avr;
using namespace Avr8Bit;
using namespace Exceptions;
2022-06-02 23:06:39 +01:00
using CommandFrames::Avr8Generic::Stop;
using CommandFrames::Avr8Generic::Run;
using CommandFrames::Avr8Generic::RunTo;
using CommandFrames::Avr8Generic::Step;
using CommandFrames::Avr8Generic::Reset;
using CommandFrames::Avr8Generic::GetProgramCounter;
using CommandFrames::Avr8Generic::SetProgramCounter;
using CommandFrames::Avr8Generic::GetDeviceId;
using CommandFrames::Avr8Generic::SetSoftwareBreakpoints;
using CommandFrames::Avr8Generic::ClearSoftwareBreakpoints;
using CommandFrames::Avr8Generic::ClearAllSoftwareBreakpoints;
2023-09-20 23:37:54 +01:00
using CommandFrames::Avr8Generic::SetHardwareBreakpoint;
using CommandFrames::Avr8Generic::ClearHardwareBreakpoint;
2022-06-02 23:06:39 +01:00
using CommandFrames::Avr8Generic::ReadMemory;
using CommandFrames::Avr8Generic::EnterProgrammingMode;
using CommandFrames::Avr8Generic::LeaveProgrammingMode;
using CommandFrames::Avr8Generic::SetParameter;
using CommandFrames::Avr8Generic::GetParameter;
using CommandFrames::Avr8Generic::ActivatePhysical;
using CommandFrames::Avr8Generic::DeactivatePhysical;
using CommandFrames::Avr8Generic::Attach;
using CommandFrames::Avr8Generic::Detach;
using CommandFrames::Avr8Generic::ReadMemory;
using CommandFrames::Avr8Generic::WriteMemory;
using CommandFrames::Avr8Generic::EraseMemory;
using CommandFrames::Avr8Generic::DisableDebugWire;
using Targets::TargetState;
using Targets::TargetPhysicalInterface;
using Targets::TargetMemoryType;
using Targets::TargetMemoryBuffer;
using Targets::TargetMemoryAddress;
using Targets::TargetMemorySize;
using Targets::TargetRegister;
using Targets::TargetRegisterDescriptor;
using Targets::TargetRegisterDescriptors;
using Targets::TargetRegisterDescriptorId;
using Targets::TargetRegisterDescriptorIds;
using Targets::TargetRegisterType;
using Targets::TargetRegisters;
EdbgAvr8Interface::EdbgAvr8Interface(
EdbgInterface* edbgInterface,
const Targets::Microchip::Avr::Avr8Bit::Avr8TargetConfig& targetConfig,
Targets::Microchip::Avr::Avr8Bit::Family targetFamily,
const Targets::Microchip::Avr::Avr8Bit::TargetParameters& targetParameters,
const Targets::TargetRegisterDescriptorMapping& targetRegisterDescriptorsById
)
2022-06-02 23:06:39 +01:00
: edbgInterface(edbgInterface)
, targetConfig(targetConfig)
, family(targetFamily)
, configVariant(EdbgAvr8Interface::resolveConfigVariant(targetFamily, targetConfig.physicalInterface))
, targetParameters(targetParameters)
, targetRegisterDescriptorsById(targetRegisterDescriptorsById)
2022-06-02 23:06:39 +01:00
{}
void EdbgAvr8Interface::init() {
if (this->configVariant == Avr8ConfigVariant::XMEGA) {
// Default PDI clock to 4MHz
// TODO: Make this adjustable via a target config parameter
2023-02-20 21:54:28 +00:00
this->setParameter(Avr8EdbgParameters::PDI_CLOCK_SPEED, static_cast<std::uint16_t>(4000));
}
if (this->configVariant == Avr8ConfigVariant::UPDI) {
// Default UPDI clock to 1.8MHz
2023-02-20 21:54:28 +00:00
this->setParameter(Avr8EdbgParameters::PDI_CLOCK_SPEED, static_cast<std::uint16_t>(1800));
this->setParameter(Avr8EdbgParameters::ENABLE_HIGH_VOLTAGE_UPDI, static_cast<std::uint8_t>(0));
}
if (this->configVariant == Avr8ConfigVariant::MEGAJTAG) {
2023-02-20 21:54:28 +00:00
// Default clock value for mega debugging is 200KHz
// TODO: Make this adjustable via a target config parameter
2023-02-20 21:54:28 +00:00
this->setParameter(Avr8EdbgParameters::MEGA_DEBUG_CLOCK, static_cast<std::uint16_t>(200));
this->setParameter(Avr8EdbgParameters::JTAG_DAISY_CHAIN_SETTINGS, static_cast<std::uint32_t>(0));
}
this->setParameter(
Avr8EdbgParameters::CONFIG_VARIANT,
static_cast<std::uint8_t>(this->configVariant)
);
this->setParameter(
Avr8EdbgParameters::CONFIG_FUNCTION,
static_cast<std::uint8_t>(this->configFunction)
);
this->setParameter(
Avr8EdbgParameters::PHYSICAL_INTERFACE,
getPhysicalInterfaceToAvr8IdMapping().at(this->targetConfig.physicalInterface)
);
this->setTargetParameters();
}
void EdbgAvr8Interface::stop() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
Stop()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Stop target command failed", responseFrame);
}
if (this->getTargetState() == TargetState::RUNNING) {
this->waitForStoppedEvent();
}
}
void EdbgAvr8Interface::run() {
this->clearEvents();
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
Run()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Run command failed", responseFrame);
}
this->targetState = TargetState::RUNNING;
}
2023-04-01 12:40:12 +01:00
void EdbgAvr8Interface::runTo(TargetMemoryAddress address) {
this->clearEvents();
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
RunTo(address)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Run-to command failed", responseFrame);
}
this->targetState = TargetState::RUNNING;
}
void EdbgAvr8Interface::step() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
Step()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Step target command failed", responseFrame);
}
this->targetState = TargetState::RUNNING;
}
void EdbgAvr8Interface::reset() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
Reset()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Reset target command failed", responseFrame);
}
try {
// Wait for stopped event
this->waitForStoppedEvent();
} catch (const Exception& exception) {
throw Exception("Failed to reset AVR8 target - missing stopped event.");
}
/*
* Issuing another command immediately after reset sometimes results in an 'illegal target state' error from
* the EDBG debug tool. Even though we waited for the break event.
*
* All we can really do here is introduce a small delay, to ensure that we're not issuing commands too quickly
* after reset.
*/
std::this_thread::sleep_for(std::chrono::milliseconds(250));
}
void EdbgAvr8Interface::activate() {
if (!this->physicalInterfaceActivated) {
try {
this->activatePhysical();
} catch (const Avr8CommandFailure& activationException) {
if (
this->targetConfig.physicalInterface == TargetPhysicalInterface::DEBUG_WIRE
&& (
activationException.code == Avr8CommandFailureCode::DEBUGWIRE_PHYSICAL_ERROR
|| activationException.code == Avr8CommandFailureCode::FAILED_TO_ENABLE_OCD
)
) {
throw DebugWirePhysicalInterfaceError(
"Failed to activate the debugWire physical interface - check target connection. "
"If the target was recently programmed via ISP, try cycling the target power. See "
+ Services::PathService::homeDomainName() + "/docs/debugging-avr-debugwire for more information."
);
}
throw activationException;
}
}
if (!this->targetAttached) {
this->attach();
}
}
void EdbgAvr8Interface::deactivate() {
if (this->targetAttached) {
if (
this->targetConfig.physicalInterface == TargetPhysicalInterface::DEBUG_WIRE
&& this->targetConfig.disableDebugWireOnDeactivate
) {
try {
this->disableDebugWire();
Logger::warning(
"Successfully disabled debugWire on the AVR8 target - this is only temporary - "
2022-03-21 13:05:08 +00:00
"the debugWire module has lost control of the RESET pin. Bloom may no longer be able to "
"interface with the target until the next power cycle."
);
} catch (const Exception& exception) {
// Failing to disable debugWire should never prevent us from proceeding with target deactivation.
Logger::error(exception.getMessage());
}
}
this->detach();
}
if (this->physicalInterfaceActivated) {
this->deactivatePhysical();
}
}
TargetMemoryAddress EdbgAvr8Interface::getProgramCounter() {
if (this->targetState != TargetState::STOPPED) {
this->stop();
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
GetProgramCounter()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Get program counter command failed", responseFrame);
}
return responseFrame.extractProgramCounter();
}
void EdbgAvr8Interface::setProgramCounter(TargetMemoryAddress programCounter) {
if (this->targetState != TargetState::STOPPED) {
this->stop();
}
/*
* The program counter will be given in byte address form, but the EDBG tool will be expecting it in word
* address (16-bit) form. This is why we divide it by 2.
*/
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
SetProgramCounter(programCounter / 2)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Set program counter command failed", responseFrame);
}
}
TargetSignature EdbgAvr8Interface::getDeviceId() {
if (this->configVariant == Avr8ConfigVariant::UPDI) {
/*
* When using the UPDI physical interface, the 'Get device ID' command behaves in an odd manner, where it
* doesn't actually return the target signature, but instead a fixed four byte string reading:
* 'A', 'V', 'R' and ' ' (white space).
*
* So it appears we cannot use that command for UPDI sessions. As an alternative, we will just read the
* signature from memory using the signature base address.
*
* TODO: Currently, we're assuming the signature will always only ever be three bytes in size, but we may
* want to consider pulling the size from the TDF.
*/
const auto signatureMemory = this->readMemory(
Avr8MemoryType::SRAM,
this->targetParameters.signatureSegmentStartAddress.value(),
3
);
if (signatureMemory.size() != 3) {
throw Exception("Failed to read AVR8 signature from target - unexpected response size");
}
return TargetSignature(signatureMemory[0], signatureMemory[1], signatureMemory[2]);
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
GetDeviceId()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Get device ID command failed", responseFrame);
}
return responseFrame.extractSignature(this->targetConfig.physicalInterface);
}
2023-09-20 23:37:54 +01:00
void EdbgAvr8Interface::setSoftwareBreakpoint(TargetMemoryAddress address) {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
SetSoftwareBreakpoints({address})
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Set software breakpoint command failed", responseFrame);
}
}
2023-09-20 23:37:54 +01:00
void EdbgAvr8Interface::clearSoftwareBreakpoint(TargetMemoryAddress address) {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
ClearSoftwareBreakpoints({address})
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Clear software breakpoint command failed", responseFrame);
}
}
2023-09-20 23:37:54 +01:00
void EdbgAvr8Interface::setHardwareBreakpoint(TargetMemoryAddress address) {
static const auto getAvailableBreakpointNumbers = [this] () {
auto breakpointNumbers = std::set<std::uint8_t>({1, 2, 3});
for (const auto& [address, allocatedNumber] : this->hardwareBreakpointNumbersByAddress) {
breakpointNumbers.erase(allocatedNumber);
}
return breakpointNumbers;
};
const auto availableBreakpointNumbers = getAvailableBreakpointNumbers();
if (availableBreakpointNumbers.empty()) {
throw Exception("Maximum hardware breakpoints have been allocated");
}
const auto breakpointNumber = *(availableBreakpointNumbers.begin());
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
SetHardwareBreakpoint(address, breakpointNumber)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Set hardware breakpoint command failed", responseFrame);
}
this->hardwareBreakpointNumbersByAddress.insert(std::pair(address, breakpointNumber));
}
void EdbgAvr8Interface::clearHardwareBreakpoint(TargetMemoryAddress address) {
const auto breakpointNumberIt = this->hardwareBreakpointNumbersByAddress.find(address);
if (breakpointNumberIt == this->hardwareBreakpointNumbersByAddress.end()) {
Logger::error("No hardware breakpoint at byte address 0x" + Services::StringService::toHex(address));
return;
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
ClearHardwareBreakpoint(breakpointNumberIt->second)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Clear hardware breakpoint command failed", responseFrame);
}
this->hardwareBreakpointNumbersByAddress.erase(address);
}
void EdbgAvr8Interface::clearAllBreakpoints() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
ClearAllSoftwareBreakpoints()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Clear all software breakpoints command failed", responseFrame);
}
// Clear all hardware breakpoints
while (!this->hardwareBreakpointNumbersByAddress.empty()) {
this->clearHardwareBreakpoint(this->hardwareBreakpointNumbersByAddress.begin()->first);
}
}
TargetRegisters EdbgAvr8Interface::readRegisters(const TargetRegisterDescriptorIds& descriptorIds) {
/*
* This function needs to be fast. Insight eagerly requests the values of all known registers that it can
* present to the user. It does this on numerous occasions (target stopped, user clicked refresh, etc). This
* means we will be frequently loading over 100 register values in a single instance.
*
* For the above reason, we do not read each register value individually. That would take far too long if we
* have over 100 registers to read. Instead, we group the register descriptors into collections by register
* type, and resolve the address range for each collection. We then perform a single read operation for
* each collection and hold the memory buffer in a random access container (std::vector). Finally, we extract
* the data for each register descriptor, from the memory buffer, and construct the relevant TargetRegister
* object.
*
* TODO: We should be grouping the register descriptors by memory type, as opposed to register type. This
* isn't much of a problem ATM, as currently, we only work with registers that are stored in the data
* address space or the register file. This will need to be addressed before we can work with any other
* registers stored elsewhere.
*/
auto output = TargetRegisters();
// Group descriptors by type and resolve the address range for each type
auto descriptorIdsByType = std::map<TargetRegisterType, std::set<TargetRegisterDescriptorId>>();
/*
* An address range is just an std::pair of addresses - the first being the start address, the second being
* the end address.
*
* TODO: Can't we just use the TargetMemoryAddressRange struct here? Review
*/
using AddressRange = std::pair<TargetMemoryAddress, TargetMemoryAddress>;
auto addressRangeByType = std::map<TargetRegisterType, AddressRange>();
for (const auto& descriptorId : descriptorIds) {
const auto descriptorIt = this->targetRegisterDescriptorsById.find(descriptorId);
assert(descriptorIt != this->targetRegisterDescriptorsById.end());
const auto& descriptor = descriptorIt->second;
if (!descriptor.startAddress.has_value()) {
Logger::debug(
"Attempted to read register in the absence of a start address - register name: "
+ descriptor.name.value_or("unknown")
);
continue;
}
descriptorIdsByType[descriptor.type].insert(descriptor.id);
const auto startAddress = descriptor.startAddress.value();
const auto endAddress = startAddress + (descriptor.size - 1);
const auto addressRangeIt = addressRangeByType.find(descriptor.type);
2022-12-03 22:16:21 +00:00
if (addressRangeIt == addressRangeByType.end()) {
2022-12-03 22:16:21 +00:00
addressRangeByType[descriptor.type] = AddressRange(startAddress, endAddress);
} else {
auto& addressRange = addressRangeIt->second;
if (startAddress < addressRange.first) {
addressRange.first = startAddress;
}
if (endAddress > addressRange.second) {
addressRange.second = endAddress;
}
}
}
/*
* Now that we have our address ranges and grouped descriptors, we can perform a single read call for each
* register type.
*/
for (const auto&[registerType, descriptorIds] : descriptorIdsByType) {
const auto& addressRange = addressRangeByType[registerType];
const auto startAddress = addressRange.first;
const auto endAddress = addressRange.second;
const auto readSize = (endAddress - startAddress) + 1;
const auto memoryType = (registerType != TargetRegisterType::GENERAL_PURPOSE_REGISTER)
? Avr8MemoryType::SRAM
: (this->configVariant == Avr8ConfigVariant::XMEGA || this->configVariant == Avr8ConfigVariant::UPDI
? Avr8MemoryType::REGISTER_FILE
: Avr8MemoryType::SRAM);
/*
* When reading the entire range, we must avoid any attempts to access the OCD data register (OCDDR), as
* the debug tool will reject the command and respond with a 0x36 error code (invalid address error).
*
* For this reason, we specify the OCDDR address as an excluded address. This will mean
* the EdbgAvr8Interface::readMemory() function will employ the masked read memory command, as opposed to
* the general read memory command. The masked read memory command allows us to specify which addresses to
* read and which ones to ignore. For ignored addresses, the debug tool will just return a 0x00 byte.
* For more info, see section 7.1.22 titled 'Memory Read Masked', in the EDBG protocol document.
*
* Interestingly, the masked read memory command doesn't seem to require us to explicitly specify the OCDDR
* address as an excluded address. It seems to exclude the OCDDR automatically, even if we've not
* instructed it to do so. This is plausible, as we send the OCDDR address to the debug tool during target
* initialisation (see EdbgAvr8Interface::setDebugWireAndJtagParameters()). So this means we don't have to
* specify the OCDDR address as an excluded address, but the EdbgAvr8Interface::readMemory() function will
* only employ the masked read memory command when we supply at least one excluded address. For this reason,
* we still pass the OCDDR address to EdbgAvr8Interface::readMemory(), as an excluded address (provided we
* have it).
*
* See CommandFrames::Avr8Generic::ReadMemory(); and the Microchip EDBG documentation for more.
*/
auto excludedAddresses = std::set<TargetMemoryAddress>();
if (memoryType == Avr8MemoryType::SRAM && this->targetParameters.ocdDataRegister.has_value()) {
excludedAddresses.insert(
this->targetParameters.ocdDataRegister.value()
+ this->targetParameters.mappedIoSegmentStartAddress.value_or(0)
);
}
const auto flatMemoryData = this->readMemory(
memoryType,
startAddress,
readSize,
excludedAddresses
);
if (flatMemoryData.size() != readSize) {
throw Exception(
"Failed to read memory within register type address range (" + std::to_string(startAddress)
+ " - " + std::to_string(endAddress) + "). Expected " + std::to_string(readSize)
+ " bytes, got " + std::to_string(flatMemoryData.size())
);
}
// Construct our TargetRegister objects directly from the flat memory buffer
for (const auto descriptorId : descriptorIds) {
const auto descriptorIt = this->targetRegisterDescriptorsById.find(descriptorId);
const auto& descriptor = descriptorIt->second;
/*
2022-06-02 23:06:39 +01:00
* Multibyte AVR8 registers are stored in LSB form.
*
* This is why we use reverse iterators when extracting our data from flatMemoryData. Doing so allows
* us to extract the data in MSB form (as is expected for all register values held in TargetRegister
* objects).
*/
const auto bufferStartIt = flatMemoryData.rend() - (descriptor.startAddress.value() - startAddress)
- descriptor.size;
output.emplace_back(
TargetRegister(
descriptor.id,
TargetMemoryBuffer(bufferStartIt, bufferStartIt + descriptor.size)
)
);
}
}
return output;
}
void EdbgAvr8Interface::writeRegisters(const Targets::TargetRegisters& registers) {
for (const auto& reg : registers) {
const auto& registerDescriptorIt = this->targetRegisterDescriptorsById.find(reg.descriptorId);
assert(registerDescriptorIt != this->targetRegisterDescriptorsById.end());
const auto& registerDescriptor = registerDescriptorIt->second;
auto registerValue = reg.value;
if (registerValue.empty()) {
throw Exception("Cannot write empty register value");
}
if (registerValue.size() > registerDescriptor.size) {
throw Exception("Register value exceeds size specified by register descriptor.");
}
if (registerValue.size() < registerDescriptor.size) {
// Fill the missing most-significant bytes with 0x00
registerValue.insert(registerValue.begin(), registerDescriptor.size - registerValue.size(), 0x00);
}
if (registerValue.size() > 1) {
// AVR8 registers are stored in LSB
std::reverse(registerValue.begin(), registerValue.end());
}
auto memoryType = Avr8MemoryType::SRAM;
2022-05-09 22:36:44 +01:00
if (
registerDescriptor.type == TargetRegisterType::GENERAL_PURPOSE_REGISTER
&& (this->configVariant == Avr8ConfigVariant::XMEGA || this->configVariant == Avr8ConfigVariant::UPDI)
2022-05-09 22:36:44 +01:00
) {
memoryType = Avr8MemoryType::REGISTER_FILE;
}
// TODO: This can be inefficient when updating many registers, maybe do something a little smarter here.
this->writeMemory(
memoryType,
registerDescriptor.startAddress.value(),
registerValue
);
}
}
TargetMemoryBuffer EdbgAvr8Interface::readMemory(
TargetMemoryType memoryType,
TargetMemoryAddress startAddress,
TargetMemorySize bytes,
const std::set<Targets::TargetMemoryAddressRange>& excludedAddressRanges
) {
if (this->programmingModeEnabled && memoryType == TargetMemoryType::RAM) {
2023-03-05 23:29:26 +00:00
throw Exception("Cannot access RAM when programming mode is enabled");
}
auto avr8MemoryType = Avr8MemoryType::SRAM;
switch (memoryType) {
case TargetMemoryType::RAM: {
avr8MemoryType = Avr8MemoryType::SRAM;
break;
}
case TargetMemoryType::FLASH: {
if (
this->configVariant == Avr8ConfigVariant::DEBUG_WIRE
|| this->configVariant == Avr8ConfigVariant::UPDI
) {
avr8MemoryType = Avr8MemoryType::FLASH_PAGE;
} else if (this->configVariant == Avr8ConfigVariant::MEGAJTAG) {
avr8MemoryType = this->programmingModeEnabled ? Avr8MemoryType::FLASH_PAGE : Avr8MemoryType::SPM;
} else if (this->configVariant == Avr8ConfigVariant::XMEGA) {
const auto bootSectionStartAddress = this->targetParameters.bootSectionStartAddress.value();
if (startAddress >= bootSectionStartAddress) {
avr8MemoryType = Avr8MemoryType::BOOT_FLASH;
/*
* When using the BOOT_FLASH memory type, the address should be relative to the start of the
* boot section.
*/
startAddress -= bootSectionStartAddress;
} else {
/*
* When using the APPL_FLASH memory type, the address should be relative to the start of the
* application section.
*/
startAddress -= this->targetParameters.appSectionStartAddress.value();
avr8MemoryType = Avr8MemoryType::APPL_FLASH;
}
}
break;
}
case TargetMemoryType::EEPROM: {
// For JTAG targets, we must use the EEPROM_PAGE memory type when in programming mode.
avr8MemoryType = (this->configVariant == Avr8ConfigVariant::MEGAJTAG && this->programmingModeEnabled)
? Avr8MemoryType::EEPROM_PAGE
: Avr8MemoryType::EEPROM;
if (this->configVariant == Avr8ConfigVariant::XMEGA) {
// EEPROM addresses should be in relative form, for XMEGA (PDI) targets
startAddress -= this->targetParameters.eepromStartAddress.value();
}
2023-05-07 16:49:45 +01:00
break;
}
case TargetMemoryType::FUSES: {
avr8MemoryType = Avr8MemoryType::FUSES;
break;
}
default: {
break;
}
}
/*
* The internal readMemory() function accepts excluded addresses in the form of a set of addresses, as
* opposed to a set of address ranges.
*
* We will perform the conversion here.
*/
auto excludedAddresses = std::set<TargetMemoryAddress>();
auto endAddress = startAddress + bytes - 1;
for (const auto& addressRange : excludedAddressRanges) {
if (addressRange.startAddress > endAddress) {
// This address range is outside of the range from which we will be reading
continue;
}
for (auto i = addressRange.startAddress; i <= addressRange.endAddress; i++) {
excludedAddresses.insert(i);
}
}
return this->readMemory(avr8MemoryType, startAddress, bytes, excludedAddresses);
}
void EdbgAvr8Interface::writeMemory(
TargetMemoryType memoryType,
TargetMemoryAddress startAddress,
const TargetMemoryBuffer& buffer
) {
auto avr8MemoryType = Avr8MemoryType::SRAM;
switch (memoryType) {
case TargetMemoryType::RAM: {
avr8MemoryType = Avr8MemoryType::SRAM;
break;
}
case TargetMemoryType::FLASH: {
if (
this->configVariant == Avr8ConfigVariant::DEBUG_WIRE
|| this->configVariant == Avr8ConfigVariant::UPDI
|| this->configVariant == Avr8ConfigVariant::MEGAJTAG
) {
avr8MemoryType = Avr8MemoryType::FLASH_PAGE;
} else if (this->configVariant == Avr8ConfigVariant::XMEGA) {
const auto bootSectionStartAddress = this->targetParameters.bootSectionStartAddress.value();
if (startAddress >= bootSectionStartAddress) {
avr8MemoryType = Avr8MemoryType::BOOT_FLASH;
/*
* When using the BOOT_FLASH memory type, the address should be relative to the start of the
* boot section.
*/
startAddress -= bootSectionStartAddress;
} else {
/*
* When using the APPL_FLASH memory type, the address should be relative to the start of the
* application section.
*/
startAddress -= this->targetParameters.appSectionStartAddress.value();
avr8MemoryType = Avr8MemoryType::APPL_FLASH;
}
}
break;
}
case TargetMemoryType::EEPROM: {
switch (this->configVariant) {
case Avr8ConfigVariant::UPDI:
case Avr8ConfigVariant::XMEGA: {
avr8MemoryType = Avr8MemoryType::EEPROM_ATOMIC;
if (this->configVariant == Avr8ConfigVariant::XMEGA) {
// EEPROM addresses should be in relative form, for XMEGA (PDI) targets
startAddress -= this->targetParameters.eepromStartAddress.value();
}
break;
}
case Avr8ConfigVariant::MEGAJTAG: {
avr8MemoryType = this->programmingModeEnabled
? Avr8MemoryType::EEPROM_PAGE
: Avr8MemoryType::EEPROM;
break;
}
default: {
avr8MemoryType = Avr8MemoryType::EEPROM;
break;
}
}
2023-05-07 16:49:45 +01:00
break;
}
case TargetMemoryType::FUSES: {
avr8MemoryType = Avr8MemoryType::FUSES;
break;
}
default: {
break;
}
}
return this->writeMemory(avr8MemoryType, startAddress, buffer);
}
void EdbgAvr8Interface::eraseProgramMemory(std::optional<Avr8Bit::ProgramMemorySection> section) {
if (this->configVariant == Avr8ConfigVariant::DEBUG_WIRE) {
// The EDBG erase command does not work on debugWire targets - we'll just write to the memory instead
return this->writeMemory(
TargetMemoryType::FLASH,
this->targetParameters.flashStartAddress.value(),
TargetMemoryBuffer(this->targetParameters.flashSize.value(), 0xFF)
);
}
if (this->configVariant == Avr8ConfigVariant::XMEGA) {
// For PDI (XMEGA) targets, we can erase flash memory without erasing EEPROM
if (!section.has_value() || *section == Avr8Bit::ProgramMemorySection::BOOT) {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
EraseMemory(Avr8EraseMemoryMode::BOOT_SECTION)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 erase memory command (for BOOT section) failed", responseFrame);
}
}
if (!section.has_value() || *section == Avr8Bit::ProgramMemorySection::APPLICATION) {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
EraseMemory(Avr8EraseMemoryMode::APPLICATION_SECTION)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure(
"AVR8 erase memory command (for APPLICATION section) failed",
responseFrame
);
}
}
return;
}
throw Exception("JTAG and UPDI targets do not support program memory erase.");
}
void EdbgAvr8Interface::eraseChip() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
EraseMemory(Avr8EraseMemoryMode::CHIP)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 erase memory command failed", responseFrame);
}
}
TargetState EdbgAvr8Interface::getTargetState() {
/*
* We are not informed when a target goes from a stopped state to a running state, so there is no need
* to query the tool when we already know the target has stopped.
*
* This means we have to rely on the assumption that the target cannot enter a running state without
* our instruction.
*/
if (this->targetState != TargetState::STOPPED) {
this->refreshTargetState();
}
return this->targetState;
}
void EdbgAvr8Interface::enableProgrammingMode() {
2022-09-17 20:16:23 +01:00
if (this->programmingModeEnabled) {
return;
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
EnterProgrammingMode()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("Failed to enter programming mode on EDBG debug tool", responseFrame);
}
this->programmingModeEnabled = true;
this->hardwareBreakpointNumbersByAddress.clear();
}
void EdbgAvr8Interface::disableProgrammingMode() {
2022-09-17 20:16:23 +01:00
if (!this->programmingModeEnabled) {
return;
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
LeaveProgrammingMode()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("Failed to leave programming mode on EDBG debug tool", responseFrame);
}
this->programmingModeEnabled = false;
if (this->configVariant == Avr8ConfigVariant::MEGAJTAG && this->reactivateJtagTargetPostProgrammingMode) {
this->deactivatePhysical();
this->targetAttached = false;
this->activate();
}
}
void EdbgAvr8Interface::setTargetParameters() {
if (!this->targetParameters.stackPointerRegisterLowAddress.has_value()) {
throw DeviceInitializationFailure("Failed to find stack pointer register start address");
}
if (!this->targetParameters.stackPointerRegisterSize.has_value()) {
throw DeviceInitializationFailure("Failed to find stack pointer register size");
}
if (!this->targetParameters.statusRegisterStartAddress.has_value()) {
throw DeviceInitializationFailure("Failed to find status register start address");
}
if (!this->targetParameters.statusRegisterSize.has_value()) {
throw DeviceInitializationFailure("Failed to find status register size");
}
switch (this->configVariant) {
case Avr8ConfigVariant::DEBUG_WIRE:
case Avr8ConfigVariant::MEGAJTAG: {
this->setDebugWireAndJtagParameters();
break;
}
case Avr8ConfigVariant::XMEGA: {
this->setPdiParameters();
break;
}
case Avr8ConfigVariant::UPDI: {
this->setUpdiParameters();
break;
}
default: {
break;
}
}
}
std::map<Family, std::map<TargetPhysicalInterface, Avr8ConfigVariant>>
EdbgAvr8Interface::getConfigVariantsByFamilyAndPhysicalInterface() {
return std::map<Family, std::map<TargetPhysicalInterface, Avr8ConfigVariant>>({
{
Family::MEGA,
{
{TargetPhysicalInterface::JTAG, Avr8ConfigVariant::MEGAJTAG},
{TargetPhysicalInterface::DEBUG_WIRE, Avr8ConfigVariant::DEBUG_WIRE},
{TargetPhysicalInterface::UPDI, Avr8ConfigVariant::UPDI},
}
},
{
Family::TINY,
{
{TargetPhysicalInterface::JTAG, Avr8ConfigVariant::MEGAJTAG},
{TargetPhysicalInterface::DEBUG_WIRE, Avr8ConfigVariant::DEBUG_WIRE},
{TargetPhysicalInterface::UPDI, Avr8ConfigVariant::UPDI},
}
},
{
Family::XMEGA,
{
{TargetPhysicalInterface::JTAG, Avr8ConfigVariant::XMEGA},
{TargetPhysicalInterface::PDI, Avr8ConfigVariant::XMEGA},
}
},
{
Family::DA,
{
{TargetPhysicalInterface::UPDI, Avr8ConfigVariant::UPDI},
}
},
{
Family::DB,
{
{TargetPhysicalInterface::UPDI, Avr8ConfigVariant::UPDI},
}
},
{
Family::DD,
{
{TargetPhysicalInterface::UPDI, Avr8ConfigVariant::UPDI},
}
},
{
Family::EA,
{
{TargetPhysicalInterface::UPDI, Avr8ConfigVariant::UPDI},
}
},
});
}
Avr8ConfigVariant EdbgAvr8Interface::resolveConfigVariant(
Targets::Microchip::Avr::Avr8Bit::Family targetFamily,
TargetPhysicalInterface physicalInterface
) {
const auto configVariantsByFamily = EdbgAvr8Interface::getConfigVariantsByFamilyAndPhysicalInterface();
const auto configVariantsByPhysicalInterfaceIt = configVariantsByFamily.find(targetFamily);
assert(configVariantsByPhysicalInterfaceIt != configVariantsByFamily.end());
const auto& configVariantsByPhysicalInterface = configVariantsByPhysicalInterfaceIt->second;
const auto configVariantIt = configVariantsByPhysicalInterface.find(physicalInterface);
assert(configVariantIt != configVariantsByPhysicalInterface.end());
return configVariantIt->second;
}
void EdbgAvr8Interface::setParameter(const Avr8EdbgParameter& parameter, const std::vector<unsigned char>& value) {
2023-01-21 14:27:45 +00:00
using Services::StringService;
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
SetParameter(parameter, value)
);
Logger::debug(
2023-01-21 14:27:45 +00:00
"Setting AVR8 EDBG parameter (context: 0x" + StringService::toHex(parameter.context) + ", id: 0x"
+ StringService::toHex(parameter.id) + ", value: 0x" + StringService::toHex(value) + ")"
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("Failed to set parameter on device!", responseFrame);
}
2021-04-04 21:04:12 +01:00
}
std::vector<unsigned char> EdbgAvr8Interface::getParameter(const Avr8EdbgParameter& parameter, std::uint8_t size) {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
GetParameter(parameter, size)
);
2021-04-04 21:04:12 +01:00
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("Failed to get parameter from device!", responseFrame);
}
return responseFrame.getPayloadData();
2021-04-04 21:04:12 +01:00
}
void EdbgAvr8Interface::setDebugWireAndJtagParameters() {
if (this->targetParameters.flashPageSize.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting FLASH_PAGE_SIZE AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_FLASH_PAGE_SIZE,
this->targetParameters.flashPageSize.value()
);
}
2021-04-04 21:04:12 +01:00
if (this->targetParameters.flashSize.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting FLASH_SIZE AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_FLASH_SIZE,
this->targetParameters.flashSize.value()
);
}
2021-04-04 21:04:12 +01:00
if (this->targetParameters.flashStartAddress.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting FLASH_BASE AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_FLASH_BASE,
this->targetParameters.flashStartAddress.value()
);
}
2021-04-04 21:04:12 +01:00
if (this->targetParameters.ramStartAddress.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting SRAM_START AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_SRAM_START,
this->targetParameters.ramStartAddress.value()
);
}
2021-04-04 21:04:12 +01:00
if (this->targetParameters.eepromSize.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting EEPROM_SIZE AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_EEPROM_SIZE,
this->targetParameters.eepromSize.value()
);
}
2021-04-04 21:04:12 +01:00
if (this->targetParameters.eepromPageSize.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting EEPROM_PAGE_SIZE AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_EEPROM_PAGE_SIZE,
this->targetParameters.eepromPageSize.value()
);
}
2021-04-04 21:04:12 +01:00
if (this->targetParameters.ocdRevision.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting OCD_REVISION AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_OCD_REVISION,
this->targetParameters.ocdRevision.value()
);
}
if (this->targetParameters.ocdDataRegister.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting OCD_DATA_REGISTER AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_OCD_DATA_REGISTER,
this->targetParameters.ocdDataRegister.value()
);
}
if (this->targetParameters.spmcRegisterStartAddress.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting SPMCR_REGISTER AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_SPMCR_REGISTER,
this->targetParameters.spmcRegisterStartAddress.value()
);
}
2021-04-04 21:04:12 +01:00
if (this->targetParameters.bootSectionStartAddress.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting BOOT_START_ADDR AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_BOOT_START_ADDR,
this->targetParameters.bootSectionStartAddress.value()
);
}
2021-04-04 21:04:12 +01:00
/*
* All addresses for registers that reside in the mapped IO memory segment include the mapped IO segment offset
* (start address). But the EDBG protocol requires *some* of these addresses to be stripped of this offset
* before sending them as target parameters.
*
* This applies to the following addresses:
*
* - OSCALL Address
* - EEARL Address
* - EEARH Address
* - EECR Address
* - EEDR Address
*
* It *doesn't* seem to apply to the SPMCR or OCDDR address.
*/
auto mappedIoStartAddress = this->targetParameters.mappedIoSegmentStartAddress.value_or(0);
if (this->targetParameters.osccalAddress.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting OSCCAL_ADDR AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_OSCCAL_ADDR,
static_cast<std::uint8_t>(
this->targetParameters.osccalAddress.value() - mappedIoStartAddress
)
);
}
2021-04-04 21:04:12 +01:00
if (this->targetParameters.eepromAddressRegisterLow.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting EEARL_ADDR AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_EEARL_ADDR,
static_cast<std::uint8_t>(
this->targetParameters.eepromAddressRegisterLow.value() - mappedIoStartAddress
)
);
}
2021-04-04 21:04:12 +01:00
if (this->targetParameters.eepromAddressRegisterHigh.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting EEARH_ADDR AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_EEARH_ADDR,
static_cast<std::uint8_t>(
this->targetParameters.eepromAddressRegisterHigh.value() - mappedIoStartAddress
)
);
}
2021-04-04 21:04:12 +01:00
if (this->targetParameters.eepromControlRegisterAddress.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting EECR_ADDR AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_EECR_ADDR,
static_cast<std::uint8_t>(
this->targetParameters.eepromControlRegisterAddress.value() - mappedIoStartAddress
)
);
}
2021-04-04 21:04:12 +01:00
if (this->targetParameters.eepromDataRegisterAddress.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting EEDR_ADDR AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_EEDR_ADDR,
static_cast<std::uint8_t>(
this->targetParameters.eepromDataRegisterAddress.value() - mappedIoStartAddress
)
);
}
}
2021-04-04 21:04:12 +01:00
void EdbgAvr8Interface::setPdiParameters() {
if (!this->targetParameters.appSectionPdiOffset.has_value()) {
throw DeviceInitializationFailure("Missing required parameter: APPL_BASE_ADDR");
}
2021-04-04 21:04:12 +01:00
if (!this->targetParameters.bootSectionPdiOffset.has_value()) {
throw DeviceInitializationFailure("Missing required parameter: BOOT_BASE_ADDR");
}
2021-04-04 21:04:12 +01:00
if (!this->targetParameters.appSectionSize.has_value()) {
throw DeviceInitializationFailure("Missing required parameter: APPLICATION_BYTES");
}
2021-04-04 21:04:12 +01:00
if (!this->targetParameters.bootSectionSize.has_value()) {
throw DeviceInitializationFailure("Missing required parameter: BOOT_BYTES");
}
2021-04-04 21:04:12 +01:00
if (!this->targetParameters.eepromPdiOffset.has_value()) {
throw DeviceInitializationFailure("Missing required parameter: EEPROM_BASE_ADDR");
}
2021-04-04 21:04:12 +01:00
if (!this->targetParameters.fuseRegistersPdiOffset.has_value()) {
throw DeviceInitializationFailure("Missing required parameter: FUSE_BASE_ADDR");
}
2021-04-04 21:04:12 +01:00
if (!this->targetParameters.lockRegistersPdiOffset.has_value()) {
throw DeviceInitializationFailure("Missing required parameter: LOCKBIT_BASE_ADDR");
}
2021-04-04 21:04:12 +01:00
if (!this->targetParameters.userSignaturesPdiOffset.has_value()) {
throw DeviceInitializationFailure("Missing required parameter: USER_SIGN_BASE_ADDR");
}
2021-04-04 21:04:12 +01:00
if (!this->targetParameters.productSignaturesPdiOffset.has_value()) {
throw DeviceInitializationFailure("Missing required parameter: PROD_SIGN_BASE_ADDR");
}
2021-04-04 21:04:12 +01:00
if (!this->targetParameters.ramPdiOffset.has_value()) {
throw DeviceInitializationFailure("Missing required parameter: DATA_BASE_ADDR");
}
2021-04-04 21:04:12 +01:00
if (!this->targetParameters.flashPageSize.has_value()) {
throw DeviceInitializationFailure("Missing required parameter: FLASH_PAGE_BYTES");
}
2021-04-04 21:04:12 +01:00
if (!this->targetParameters.eepromSize.has_value()) {
throw DeviceInitializationFailure("Missing required parameter: EEPROM_SIZE");
}
2021-04-04 21:04:12 +01:00
if (!this->targetParameters.eepromPageSize.has_value()) {
throw DeviceInitializationFailure("Missing required parameter: EEPROM_PAGE_SIZE");
}
if (!this->targetParameters.nvmModuleBaseAddress.has_value()) {
throw DeviceInitializationFailure("Missing required parameter: NVM_BASE");
}
2021-04-04 21:04:12 +01:00
if (!this->targetParameters.mcuModuleBaseAddress.has_value()) {
throw DeviceInitializationFailure("Missing required parameter: SIGNATURE_OFFSET (MCU module base address)");
}
Logger::debug("Setting APPL_BASE_ADDR AVR8 parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_XMEGA_APPL_BASE_ADDR,
this->targetParameters.appSectionPdiOffset.value()
);
Logger::debug("Setting BOOT_BASE_ADDR AVR8 parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_XMEGA_BOOT_BASE_ADDR,
this->targetParameters.bootSectionPdiOffset.value()
);
2021-04-04 21:04:12 +01:00
Logger::debug("Setting EEPROM_BASE_ADDR AVR8 parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_XMEGA_EEPROM_BASE_ADDR,
this->targetParameters.eepromPdiOffset.value()
);
Logger::debug("Setting FUSE_BASE_ADDR AVR8 parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_XMEGA_FUSE_BASE_ADDR,
this->targetParameters.fuseRegistersPdiOffset.value()
);
2021-04-04 21:04:12 +01:00
Logger::debug("Setting LOCKBIT_BASE_ADDR AVR8 parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_XMEGA_LOCKBIT_BASE_ADDR,
this->targetParameters.lockRegistersPdiOffset.value()
);
2021-04-04 21:04:12 +01:00
Logger::debug("Setting USER_SIGN_BASE_ADDR AVR8 parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_XMEGA_USER_SIGN_BASE_ADDR,
this->targetParameters.userSignaturesPdiOffset.value()
);
2021-04-04 21:04:12 +01:00
Logger::debug("Setting PROD_SIGN_BASE_ADDR AVR8 parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_XMEGA_PROD_SIGN_BASE_ADDR,
this->targetParameters.productSignaturesPdiOffset.value()
);
2021-04-04 21:04:12 +01:00
Logger::debug("Setting DATA_BASE_ADDR AVR8 parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_XMEGA_DATA_BASE_ADDR,
this->targetParameters.ramPdiOffset.value()
);
2021-04-04 21:04:12 +01:00
Logger::debug("Setting APPLICATION_BYTES AVR8 parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_XMEGA_APPLICATION_BYTES,
this->targetParameters.appSectionSize.value()
);
2021-04-04 21:04:12 +01:00
Logger::debug("Setting BOOT_BYTES AVR8 parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_XMEGA_BOOT_BYTES,
this->targetParameters.bootSectionSize.value()
);
2021-04-04 21:04:12 +01:00
Logger::debug("Setting FLASH_PAGE_BYTES AVR8 parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_XMEGA_FLASH_PAGE_BYTES,
this->targetParameters.flashPageSize.value()
);
2021-04-04 21:04:12 +01:00
Logger::debug("Setting EEPROM_SIZE AVR8 parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_XMEGA_EEPROM_SIZE,
this->targetParameters.eepromSize.value()
);
2021-04-04 21:04:12 +01:00
Logger::debug("Setting EEPROM_PAGE_SIZE AVR8 parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_XMEGA_EEPROM_PAGE_SIZE,
static_cast<std::uint8_t>(this->targetParameters.eepromPageSize.value())
);
2021-04-04 21:04:12 +01:00
Logger::debug("Setting NVM_BASE AVR8 parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_XMEGA_NVM_BASE,
this->targetParameters.nvmModuleBaseAddress.value()
);
Logger::debug("Setting SIGNATURE_OFFSET AVR8 parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_XMEGA_SIGNATURE_OFFSET,
this->targetParameters.mcuModuleBaseAddress.value()
);
}
void EdbgAvr8Interface::setUpdiParameters() {
if (!this->targetParameters.signatureSegmentStartAddress.has_value()) {
throw DeviceInitializationFailure("Missing required parameter: SIGNATURE BASE ADDRESS");
}
2021-04-04 21:04:12 +01:00
if (!this->targetParameters.eepromPageSize.has_value()) {
throw DeviceInitializationFailure("Missing required parameter: UPDI_EEPROM_PAGE_SIZE");
}
if (this->targetParameters.programMemoryUpdiStartAddress.has_value()) {
/*
* The program memory base address field for UPDI sessions (DEVICE_UPDI_PROGMEM_BASE_ADDR) seems to be
* limited to two bytes in size, as opposed to the four byte size for the debugWire, JTAG and PDI
* equivalent fields. This is why, I suspect, another field was required for the most significant byte of
* the program memory base address (DEVICE_UPDI_PROGMEM_BASE_ADDR_MSB).
*
* The additional DEVICE_UPDI_PROGMEM_BASE_ADDR_MSB field is only one byte in size, so it brings the total
* capacity for the program memory base address to three bytes. Because of this, we ensure that all TDFs,
* for targets that support UPDI, specify an address that does not exceed the maximum value of a 24 bit
* unsigned integer. This is done in our TDF validation script (see src/Targets/TargetDescription/README.md
* for more).
*/
const auto programMemBaseAddress = this->targetParameters.programMemoryUpdiStartAddress.value();
2022-12-08 21:18:18 +00:00
Logger::debug("Setting UPDI_PROGMEM_BASE_ADDR AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_PROGMEM_BASE_ADDR,
static_cast<std::uint16_t>(programMemBaseAddress)
);
2021-04-04 21:04:12 +01:00
2022-12-08 21:18:18 +00:00
Logger::debug("Setting UPDI_PROGMEM_BASE_ADDR_MSB AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_PROGMEM_BASE_ADDR_MSB,
static_cast<std::uint8_t>(programMemBaseAddress >> 16)
);
2021-04-04 21:04:12 +01:00
}
2021-12-25 21:01:58 +00:00
if (this->targetParameters.flashPageSize.has_value()) {
/*
* See the comment above regarding capacity limitations of the DEVICE_UPDI_PROGMEM_BASE_ADDR field.
*
* The same applies here, for the flash page size field (DEVICE_UPDI_FLASH_PAGE_SIZE).
*/
auto flashPageSize = this->targetParameters.flashPageSize.value();
2022-12-08 21:18:18 +00:00
Logger::debug("Setting UPDI_FLASH_PAGE_SIZE AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_FLASH_PAGE_SIZE,
static_cast<std::uint8_t>(flashPageSize)
);
2021-04-04 21:04:12 +01:00
2022-12-08 21:18:18 +00:00
Logger::debug("Setting UPDI_FLASH_PAGE_SIZE_MSB AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_FLASH_PAGE_SIZE_MSB,
static_cast<std::uint8_t>(flashPageSize >> 8)
);
}
2021-04-04 21:04:12 +01:00
if (this->targetParameters.eepromPageSize.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting UPDI_EEPROM_PAGE_SIZE AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_EEPROM_PAGE_SIZE,
this->targetParameters.eepromPageSize.value()
);
}
2021-04-04 21:04:12 +01:00
if (this->targetParameters.nvmModuleBaseAddress.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting UPDI_NVMCTRL_ADDR AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_NVMCTRL_ADDR,
this->targetParameters.nvmModuleBaseAddress.value()
);
}
2021-04-04 21:04:12 +01:00
if (this->targetParameters.ocdModuleAddress.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting UPDI_OCD_ADDR AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_OCD_ADDR,
this->targetParameters.ocdModuleAddress.value()
);
}
2021-04-04 21:04:12 +01:00
if (this->targetParameters.flashSize.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting UPDI_FLASH_SIZE AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_FLASH_SIZE,
this->targetParameters.flashSize.value()
);
}
if (this->targetParameters.eepromSize.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting UPDI_EEPROM_SIZE AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_EEPROM_SIZE,
this->targetParameters.eepromSize.value()
);
}
2021-04-04 21:04:12 +01:00
if (this->targetParameters.eepromStartAddress.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting UPDI_EEPROM_BASE_ADDR AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_EEPROM_BASE_ADDR,
this->targetParameters.eepromStartAddress.value()
);
}
2021-04-04 21:04:12 +01:00
if (this->targetParameters.signatureSegmentStartAddress.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting UPDI_SIG_BASE_ADDR AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_SIG_BASE_ADDR,
this->targetParameters.signatureSegmentStartAddress.value()
);
}
if (this->targetParameters.fuseSegmentStartAddress.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting UPDI_FUSE_BASE_ADDR AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_FUSE_BASE_ADDR,
this->targetParameters.fuseSegmentStartAddress.value()
);
}
if (this->targetParameters.fuseSegmentSize.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting UPDI_FUSE_SIZE AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_FUSE_SIZE,
this->targetParameters.fuseSegmentSize.value()
);
}
2021-04-04 21:04:12 +01:00
if (this->targetParameters.lockbitsSegmentStartAddress.has_value()) {
2022-12-08 21:18:18 +00:00
Logger::debug("Setting UPDI_LOCK_BASE_ADDR AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_LOCK_BASE_ADDR,
this->targetParameters.lockbitsSegmentStartAddress.value()
);
}
2021-04-04 21:04:12 +01:00
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_24_BIT_ADDRESSING_ENABLE,
this->targetParameters.programMemoryUpdiStartAddress.value_or(0) > 0xFFFF ?
static_cast<std::uint8_t>(1) : static_cast<std::uint8_t>(0)
);
2021-04-04 21:04:12 +01:00
}
void EdbgAvr8Interface::activatePhysical(bool applyExternalReset) {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
ActivatePhysical(applyExternalReset)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
if (!applyExternalReset) {
// Try again with external reset applied
Logger::debug("Failed to activate physical interface on AVR8 target "
"- retrying with external reset applied.");
return this->activatePhysical(true);
}
2021-04-04 21:04:12 +01:00
throw Avr8CommandFailure("AVR8 Activate physical interface command failed", responseFrame);
}
2021-04-04 21:04:12 +01:00
this->physicalInterfaceActivated = true;
2021-04-04 21:04:12 +01:00
}
void EdbgAvr8Interface::deactivatePhysical() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
DeactivatePhysical()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Deactivate physical interface command failed", responseFrame);
2021-04-04 21:04:12 +01:00
}
this->physicalInterfaceActivated = false;
}
2021-04-04 21:04:12 +01:00
void EdbgAvr8Interface::attach() {
/*
* When attaching an ATmega target that is connected via JTAG, we must not set the breakAfterAttach flag, as
* this results in a timeout.
*
* However, in this case the attach command seems to _sometimes_ halt the target anyway, regardless of the
* value of the breakAfterAttach flag. So we still expect a stop event to be received shortly after issuing
* the attach command.
*/
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
Attach(
this->configVariant != Avr8ConfigVariant::MEGAJTAG
)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Attach command failed", responseFrame);
}
this->targetAttached = true;
try {
// Wait for stopped event
this->waitForStoppedEvent();
} catch (const Exception& exception) {
Logger::warning(
"Execution on AVR8 target could not be halted post attach - " + exception.getMessage()
);
}
}
void EdbgAvr8Interface::detach() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
Detach()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Detach command failed", responseFrame);
}
this->targetAttached = false;
}
std::unique_ptr<AvrEvent> EdbgAvr8Interface::getAvrEvent() {
auto event = this->edbgInterface->requestAvrEvent();
if (!event.has_value()) {
return nullptr;
}
switch (event->eventId.value()) {
case AvrEventId::AVR8_BREAK_EVENT: {
// Break event
return std::make_unique<BreakEvent>(event.value());
}
default: {
/*
* TODO: This isn't very nice as we're performing an unnecessary copy. Maybe requestAvrEvents should
* return a unique_ptr instead?
*/
return std::make_unique<AvrEvent>(event.value());
}
}
}
void EdbgAvr8Interface::clearEvents() {
while (this->getAvrEvent() != nullptr) {}
}
bool EdbgAvr8Interface::alignmentRequired(Avr8MemoryType memoryType) {
return
memoryType == Avr8MemoryType::FLASH_PAGE
|| memoryType == Avr8MemoryType::SPM
|| memoryType == Avr8MemoryType::APPL_FLASH
|| memoryType == Avr8MemoryType::BOOT_FLASH
|| memoryType == Avr8MemoryType::EEPROM_ATOMIC
|| memoryType == Avr8MemoryType::EEPROM_PAGE
;
}
TargetMemoryAddress EdbgAvr8Interface::alignMemoryAddress(
Avr8MemoryType memoryType,
TargetMemoryAddress address
) {
std::uint16_t alignTo = 1;
2022-12-11 23:40:37 +00:00
switch (memoryType) {
case Avr8MemoryType::FLASH_PAGE:
case Avr8MemoryType::SPM:
case Avr8MemoryType::APPL_FLASH:
case Avr8MemoryType::BOOT_FLASH: {
2022-12-13 21:12:16 +00:00
/*
* Although the EDBG documentation claims any number of bytes can be accessed via the FLASH_PAGE mem
* type, when using the UPDI config variant, this isn't strictly true.
*
* When writing to flash on UPDI targets, we MUST page align the write operations. And we cannot word
* align them - we've tried only word aligning them - the debug tool reports a "Too many or too few
* bytes" error.
*/
2022-12-11 23:40:37 +00:00
alignTo = this->targetParameters.flashPageSize.value();
break;
}
case Avr8MemoryType::EEPROM_ATOMIC:
case Avr8MemoryType::EEPROM_PAGE: {
alignTo = this->targetParameters.eepromPageSize.value();
break;
}
default: {
break;
}
}
if ((address % alignTo) != 0) {
return static_cast<TargetMemoryAddress>(std::floor(
static_cast<float>(address) / static_cast<float>(alignTo)
) * alignTo);
}
return address;
}
TargetMemorySize EdbgAvr8Interface::alignMemoryBytes(
Avr8MemoryType memoryType,
TargetMemorySize bytes
) {
std::uint16_t alignTo = 1;
2022-12-11 23:40:37 +00:00
switch (memoryType) {
case Avr8MemoryType::FLASH_PAGE:
case Avr8MemoryType::SPM:
case Avr8MemoryType::APPL_FLASH:
case Avr8MemoryType::BOOT_FLASH: {
2022-12-13 21:12:16 +00:00
// See comment in EdbgAvr8Interface::alignMemoryAddress()
2022-12-11 23:40:37 +00:00
alignTo = this->targetParameters.flashPageSize.value();
break;
}
case Avr8MemoryType::EEPROM_ATOMIC:
case Avr8MemoryType::EEPROM_PAGE: {
alignTo = this->targetParameters.eepromPageSize.value();
break;
}
default: {
break;
}
}
if ((bytes % alignTo) != 0) {
return static_cast<TargetMemorySize>(std::ceil(
static_cast<float>(bytes) / static_cast<float>(alignTo)
) * alignTo);
}
return bytes;
}
std::optional<Targets::TargetMemorySize> EdbgAvr8Interface::maximumMemoryAccessSize(Avr8MemoryType memoryType) {
if (
memoryType == Avr8MemoryType::FLASH_PAGE
|| memoryType == Avr8MemoryType::APPL_FLASH
|| memoryType == Avr8MemoryType::BOOT_FLASH
|| (memoryType == Avr8MemoryType::SPM && this->configVariant == Avr8ConfigVariant::MEGAJTAG)
) {
// These flash memory types require single page access.
return this->targetParameters.flashPageSize.value();
}
if (
memoryType == Avr8MemoryType::EEPROM_ATOMIC
|| memoryType == Avr8MemoryType::EEPROM_PAGE
) {
// These EEPROM memory types requires single page access.
return this->targetParameters.eepromPageSize.value();
}
if (this->maximumMemoryAccessSizePerRequest.has_value()) {
// There is a memory access size limit for this entire EdbgAvr8Interface instance
return this->maximumMemoryAccessSizePerRequest;
}
/*
* EDBG AVR8 debug tools behave in a really weird way when receiving or responding with more than two packets
* for a single memory access command. The data they read/write in this case appears to be wrong.
*
* To address this, we make sure we only issue memory access commands that will result in no more than two
* packets being sent to and from the debug tool.
*
* The -30 is to accommodate for the bytes in the command that are not part of the main payload of the command.
*/
return static_cast<Targets::TargetMemorySize>(
(this->edbgInterface->getUsbHidInputReportSize() - 30) * 2
);
}
TargetMemoryBuffer EdbgAvr8Interface::readMemory(
Avr8MemoryType type,
TargetMemoryAddress startAddress,
TargetMemorySize bytes,
const std::set<TargetMemoryAddress>& excludedAddresses
) {
2023-05-07 16:49:45 +01:00
if (type == Avr8MemoryType::FUSES) {
if (this->configVariant == Avr8ConfigVariant::DEBUG_WIRE) {
throw Exception("Cannot access AVR fuses via the debugWire interface");
}
}
const auto managingProgrammingMode = type == Avr8MemoryType::FUSES && !this->programmingModeEnabled;
if (managingProgrammingMode) {
this->enableProgrammingMode();
}
if (!excludedAddresses.empty() && (this->avoidMaskedMemoryRead || type != Avr8MemoryType::SRAM)) {
2021-04-04 21:04:12 +01:00
/*
* Driver-side masked memory read.
*
* Split the read into numerous reads, whenever we encounter an excluded address.
2021-04-04 21:04:12 +01:00
*
* All values for bytes located at excluded addresses will be returned as 0x00 - this mirrors the behaviour
* of the masked read memory EDBG command.
2021-04-04 21:04:12 +01:00
*/
auto output = TargetMemoryBuffer();
output.reserve(bytes);
auto segmentStartAddress = startAddress;
const auto endAddress = startAddress + bytes - 1;
for (const auto excludedAddress : excludedAddresses) {
if (excludedAddress < startAddress || excludedAddress > endAddress) {
// This excluded address is outside of the range from which we are reading, so it can be ignored.
continue;
}
const auto segmentSize = excludedAddress - segmentStartAddress;
if (segmentSize > 0) {
auto segmentBuffer = this->readMemory(
type,
segmentStartAddress,
segmentSize
);
2022-05-23 23:50:10 +01:00
std::move(segmentBuffer.begin(), segmentBuffer.end(), std::back_inserter(output));
}
2021-04-04 21:04:12 +01:00
output.emplace_back(0x00);
2021-04-04 21:04:12 +01:00
segmentStartAddress = excludedAddress + 1;
2021-04-04 21:04:12 +01:00
}
// Read final segment
const auto finalReadBytes = (endAddress - segmentStartAddress) + 1;
if (finalReadBytes > 0) {
auto segmentBuffer = this->readMemory(
type,
segmentStartAddress,
finalReadBytes
);
2022-05-23 23:50:10 +01:00
std::move(segmentBuffer.begin(), segmentBuffer.end(), std::back_inserter(output));
}
return output;
}
if (this->alignmentRequired(type)) {
const auto alignedStartAddress = this->alignMemoryAddress(type, startAddress);
const auto alignedBytes = this->alignMemoryBytes(type, bytes + (startAddress - alignedStartAddress));
if (alignedStartAddress != startAddress || alignedBytes != bytes) {
2022-05-23 23:50:10 +01:00
auto memoryBuffer = this->readMemory(type, alignedStartAddress, alignedBytes, excludedAddresses);
2021-04-04 21:04:12 +01:00
const auto offset = memoryBuffer.begin() + (startAddress - alignedStartAddress);
auto output = TargetMemoryBuffer();
output.reserve(bytes);
2022-05-23 23:50:10 +01:00
std::move(offset, offset + bytes, std::back_inserter(output));
return output;
2021-04-04 21:04:12 +01:00
}
}
2021-04-04 21:04:12 +01:00
const auto maximumReadSize = this->maximumMemoryAccessSize(type);
if (maximumReadSize.has_value() && bytes > *maximumReadSize) {
auto output = Targets::TargetMemoryBuffer();
output.reserve(bytes);
while (output.size() < bytes) {
const auto bytesToRead = std::min(
static_cast<TargetMemorySize>(bytes - output.size()),
*maximumReadSize
2022-05-23 23:50:10 +01:00
);
auto data = this->readMemory(
type,
static_cast<TargetMemoryAddress>(startAddress + output.size()),
bytesToRead,
excludedAddresses
);
std::move(data.begin(), data.end(), std::back_inserter(output));
}
2021-04-04 21:04:12 +01:00
return output;
}
2021-04-04 21:04:12 +01:00
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
ReadMemory(
type,
startAddress,
bytes,
excludedAddresses
)
);
if (managingProgrammingMode) {
this->disableProgrammingMode();
}
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Read memory command failed", responseFrame);
}
2021-04-04 21:04:12 +01:00
2022-12-11 23:40:37 +00:00
const auto data = responseFrame.getMemoryData();
if (data.size() != bytes) {
throw Avr8CommandFailure("Unexpected number of bytes returned from EDBG debug tool");
}
return data;
2021-04-04 21:04:12 +01:00
}
void EdbgAvr8Interface::writeMemory(
Avr8MemoryType type,
TargetMemoryAddress startAddress,
const TargetMemoryBuffer& buffer
) {
2023-05-07 16:49:45 +01:00
if (type == Avr8MemoryType::FUSES) {
if (this->configVariant == Avr8ConfigVariant::DEBUG_WIRE) {
throw Exception("Cannot access AVR fuses via the debugWire interface");
}
}
const auto managingProgrammingMode = type == Avr8MemoryType::FUSES && !this->programmingModeEnabled;
if (managingProgrammingMode) {
this->enableProgrammingMode();
}
const auto bytes = static_cast<TargetMemorySize>(buffer.size());
if (this->alignmentRequired(type)) {
const auto alignedStartAddress = this->alignMemoryAddress(type, startAddress);
const auto alignedBytes = this->alignMemoryBytes(type, bytes + (startAddress - alignedStartAddress));
if (alignedStartAddress != startAddress || alignedBytes != bytes) {
/*
* We can't just forward the memory type to readMemory(), because some memory types (such as
* EEPROM_ATOMIC) can only be used for writing.
*
* This nasty hack will have to do for now.
*/
const auto readMemoryType = type == Avr8MemoryType::EEPROM_ATOMIC ? Avr8MemoryType::EEPROM : type;
auto alignedBuffer = this->readMemory(readMemoryType, alignedStartAddress, alignedBytes);
assert(alignedBuffer.size() >= buffer.size());
const auto offset = alignedBuffer.begin() + (startAddress - alignedStartAddress);
std::copy(buffer.begin(), buffer.end(), offset);
return this->writeMemory(type, alignedStartAddress, alignedBuffer);
}
}
const auto maximumWriteSize = this->maximumMemoryAccessSize(type);
if (maximumWriteSize.has_value() && buffer.size() > *maximumWriteSize) {
auto bytesWritten = TargetMemorySize(0);
while (bytesWritten < buffer.size()) {
const auto chunkSize = std::min(
static_cast<TargetMemorySize>(buffer.size() - bytesWritten),
*maximumWriteSize
);
this->writeMemory(
type,
startAddress + bytesWritten,
TargetMemoryBuffer(
buffer.begin() + bytesWritten,
buffer.begin() + bytesWritten + chunkSize
)
);
bytesWritten += chunkSize;
}
return;
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
WriteMemory(
type,
startAddress,
buffer
)
);
// We must disable and re-enable programming mode, in order for the changes to the fuse bit to take effect.
if (type == Avr8MemoryType::FUSES) {
this->disableProgrammingMode();
if (!managingProgrammingMode) {
this->enableProgrammingMode();
}
}
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Write memory command failed", responseFrame);
}
2021-04-04 21:04:12 +01:00
}
void EdbgAvr8Interface::refreshTargetState() {
2022-06-04 15:20:37 +01:00
const auto avrEvent = this->getAvrEvent();
2021-04-04 21:04:12 +01:00
if (avrEvent != nullptr && avrEvent->eventId == AvrEventId::AVR8_BREAK_EVENT) {
auto* breakEvent = dynamic_cast<BreakEvent*>(avrEvent.get());
if (breakEvent == nullptr) {
throw Exception("Failed to process AVR8 break event");
}
this->targetState = TargetState::STOPPED;
return;
}
2021-04-04 21:04:12 +01:00
this->targetState = TargetState::RUNNING;
2021-04-04 21:04:12 +01:00
}
void EdbgAvr8Interface::disableDebugWire() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
2022-06-02 23:06:39 +01:00
DisableDebugWire()
);
2021-04-04 21:04:12 +01:00
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Disable debugWire command failed", responseFrame);
}
2021-04-04 21:04:12 +01:00
}
void EdbgAvr8Interface::waitForStoppedEvent() {
auto breakEvent = this->waitForAvrEvent<BreakEvent>();
if (breakEvent == nullptr) {
throw Exception("Failed to receive break event for AVR8 target");
}
this->targetState = TargetState::STOPPED;
}
2021-04-04 21:04:12 +01:00
}