Files
BloomPatched/src/DebugToolDrivers/Wch/WchLinkDebugInterface.cpp

718 lines
32 KiB
C++
Raw Normal View History

#include "WchLinkDebugInterface.hpp"
#include <array>
#include "Protocols/WchLink/Commands/Control/AttachTarget.hpp"
#include "Protocols/WchLink/Commands/Control/DetachTarget.hpp"
#include "Protocols/WchLink/Commands/Control/PostAttach.hpp"
#include "Protocols/WchLink/Commands/Control/GetDeviceInfo.hpp"
#include "Protocols/WchLink/Commands/DebugModuleInterfaceOperation.hpp"
#include "Protocols/WchLink/FlashProgramOpcodes.hpp"
#include "src/Targets/RiscV/Opcodes/Opcode.hpp"
2025-01-28 00:08:38 +00:00
#include "src/Services/AlignmentService.hpp"
#include "src/Services/StringService.hpp"
#include "src/Exceptions/InternalFatalErrorException.hpp"
#include "src/TargetController/Exceptions/TargetOperationFailure.hpp"
#include "src/Targets/TargetDescription/Exceptions/InvalidTargetDescriptionDataException.hpp"
#include "src/Logger/Logger.hpp"
namespace DebugToolDrivers::Wch
{
using ::Targets::TargetExecutionState;
using ::Targets::TargetMemoryAddress;
using ::Targets::TargetMemoryAddressRange;
using ::Targets::TargetMemorySize;
using ::Targets::TargetMemoryBuffer;
using ::Targets::TargetMemoryBufferSpan;
using ::Targets::TargetStackPointer;
using ::Targets::TargetAddressSpaceDescriptor;
using ::Targets::TargetMemorySegmentDescriptor;
using ::Targets::TargetProgramBreakpoint;
using ::Targets::TargetMemorySegmentType;
using ::Targets::TargetRegisterDescriptors;
using ::Targets::TargetRegisterDescriptorAndValuePairs;
using namespace Protocols::WchLink;
using namespace ::Exceptions;
WchLinkDebugInterface::WchLinkDebugInterface(
const WchLinkToolConfig& toolConfig,
const Targets::RiscV::RiscVTargetConfig& targetConfig,
const Targets::RiscV::TargetDescriptionFile& targetDescriptionFile,
Protocols::WchLink::WchLinkInterface& wchLinkInterface
)
: toolConfig(toolConfig)
, targetConfig(targetConfig)
, targetDescriptionFile(targetDescriptionFile)
, wchLinkInterface(wchLinkInterface)
, riscVTranslator(
::DebugToolDrivers::Protocols::RiscVDebugSpec::DebugTranslator{
this->wchLinkInterface,
this->toolConfig.riscVDebugTranslatorConfig,
this->targetDescriptionFile,
this->targetConfig
}
)
, sysAddressSpaceDescriptor(this->targetDescriptionFile.getSystemAddressSpaceDescriptor())
, mainProgramSegmentDescriptor(this->sysAddressSpaceDescriptor.getMemorySegmentDescriptor("main_program"))
, flashProgramOpcodes(
WchLinkDebugInterface::getFlashProgramOpcodes(
this->targetDescriptionFile.getProperty("wch_link_interface", "programming_opcode_key").value
)
)
2024-11-26 21:01:25 +00:00
, programmingBlockSize(
Services::StringService::toUint32(
2024-11-26 21:01:25 +00:00
this->targetDescriptionFile.getProperty("wch_link_interface", "programming_block_size").value
)
)
{}
void WchLinkDebugInterface::activate() {
this->wchLinkInterface.setClockSpeed(
WchLinkTargetClockSpeed::CLK_6000_KHZ,
this->cachedTargetId.value_or(0x01)
);
auto response = this->wchLinkInterface.sendCommandAndWaitForResponse(Commands::Control::AttachTarget{});
if (response.payload.size() != 5) {
2024-12-15 17:34:11 +00:00
throw DeviceCommunicationFailure{"Unexpected response payload size for AttachTarget command"};
}
this->cachedTargetId = response.payload[0];
/*
* For some WCH targets, we must send another command to the debug tool, immediately after attaching.
*
* I don't know what this post-attach command does. But what I *do* know is that the target and/or the debug
* tool will misbehave if we don't send it immediately after the attach.
*
* More specifically, the debug tool will read an invalid target variant ID upon the mutation of the target's
* program buffer. So when we write to progbuf2, progbuf3, progbuf4 or progbuf5, all subsequent reads of the
* target variant ID will yield invalid values, until the target and debug tool have been power cycled.
* Interestingly, when we restore those progbuf registers to their original values, the reading of the target
* variant ID works again. So I suspect the debug tool is using the target's program buffer to read the
* variant ID, but it's assuming the program buffer hasn't changed. Maybe.
*
* So how does this post-attach command fix this issue? I don't know. I just know that it does.
*
* In addition to sending the post-attach command, we have to send another attach command, because the target
* variant ID returned in the response of the first attach command may be invalid. Sending another attach
* command will ensure that we have a valid target variant ID.
*
* TODO: Add a property to the target's TDF, to determine whether the post-attach is required, instead of
* hardcoding target IDs here. This can be done after v2.0.0.
*/
if (this->cachedTargetId == 0x09) {
this->wchLinkInterface.sendCommandAndWaitForResponse(Commands::Control::PostAttach{});
response = this->wchLinkInterface.sendCommandAndWaitForResponse(Commands::Control::AttachTarget{});
if (response.payload.size() != 5) {
2024-12-15 17:34:11 +00:00
throw DeviceCommunicationFailure{
"Unexpected response payload size for subsequent AttachTarget command"
};
}
}
this->cachedVariantId = static_cast<WchTargetVariantId>(
(response.payload[1] << 24) | (response.payload[2] << 16) | (response.payload[3] << 8)
| (response.payload[4])
);
this->riscVTranslator.activate();
}
void WchLinkDebugInterface::deactivate() {
this->riscVTranslator.clearAllTriggers();
this->riscVTranslator.deactivate();
const auto response = this->wchLinkInterface.sendCommandAndWaitForResponse(Commands::Control::DetachTarget{});
if (response.payload.size() != 1) {
2024-12-15 17:34:11 +00:00
throw DeviceCommunicationFailure{"Unexpected response payload size for DetachTarget command"};
}
}
std::string WchLinkDebugInterface::getDeviceId() {
return "0x" + Services::StringService::toHex(this->cachedVariantId.value());
}
Targets::TargetExecutionState WchLinkDebugInterface::getExecutionState() {
return this->riscVTranslator.getExecutionState();
}
void WchLinkDebugInterface::stop() {
this->riscVTranslator.stop();
}
void WchLinkDebugInterface::run() {
this->riscVTranslator.run();
}
void WchLinkDebugInterface::step() {
this->riscVTranslator.step();
}
void WchLinkDebugInterface::reset() {
this->riscVTranslator.reset();
}
Targets::BreakpointResources WchLinkDebugInterface::getBreakpointResources() {
return {
.hardwareBreakpoints = this->riscVTranslator.getTriggerCount(),
.softwareBreakpoints = 0xFFFFFFFF, // TODO: Use the program memory size to determine the limit.
};
}
void WchLinkDebugInterface::setProgramBreakpoint(const TargetProgramBreakpoint& breakpoint) {
if (breakpoint.type == TargetProgramBreakpoint::Type::HARDWARE) {
this->riscVTranslator.insertTriggerBreakpoint(breakpoint.address);
} else {
this->setSoftwareBreakpoint(breakpoint);
}
}
void WchLinkDebugInterface::removeProgramBreakpoint(const TargetProgramBreakpoint& breakpoint) {
if (breakpoint.type == TargetProgramBreakpoint::Type::HARDWARE) {
this->riscVTranslator.clearTriggerBreakpoint(breakpoint.address);
} else {
this->clearSoftwareBreakpoint(breakpoint);
}
}
Targets::TargetRegisterDescriptorAndValuePairs WchLinkDebugInterface::readCpuRegisters(
const Targets::TargetRegisterDescriptors& descriptors
) {
return this->riscVTranslator.readCpuRegisters(descriptors);
}
void WchLinkDebugInterface::writeCpuRegisters(const Targets::TargetRegisterDescriptorAndValuePairs& registers) {
return this->riscVTranslator.writeCpuRegisters(registers);
}
Targets::TargetMemoryBuffer WchLinkDebugInterface::readMemory(
const TargetAddressSpaceDescriptor& addressSpaceDescriptor,
const TargetMemorySegmentDescriptor& memorySegmentDescriptor,
Targets::TargetMemoryAddress startAddress,
Targets::TargetMemorySize bytes,
const std::set<Targets::TargetMemoryAddressRange>& excludedAddressRanges
) {
return this->riscVTranslator.readMemory(
addressSpaceDescriptor,
memorySegmentDescriptor,
startAddress,
bytes,
excludedAddressRanges
);
}
void WchLinkDebugInterface::writeMemory(
const TargetAddressSpaceDescriptor& addressSpaceDescriptor,
const TargetMemorySegmentDescriptor& memorySegmentDescriptor,
Targets::TargetMemoryAddress startAddress,
Targets::TargetMemoryBufferSpan buffer
) {
if (memorySegmentDescriptor.type == TargetMemorySegmentType::FLASH) {
2024-11-26 21:01:25 +00:00
/*
* WCH-Link tools provide two dedicated commands for writing to flash memory:
2024-11-26 21:01:25 +00:00
*
* - Partial block write
* Writes any number of 16-bit-aligned bytes to flash, but limited to a maximum of 64 bytes per write -
* larger writes must be split into multiple writes. Can only access a single page at a time - writes
* which span multiple pages must be split into multiple writes.
* - Full block write
* Writes an entire block to flash, where the block size is target-specific (resides in the target's
* TDF) and is typically equal to 16 pages. Requires alignment to the block size. Requires reattaching
* to the target at the end of the write operation.
2024-11-26 21:01:25 +00:00
*
* The full block write is much faster for writing large buffers (KiBs), such as when we're programming
* the target. But the partial block write is faster and more suitable for writing buffers that are
* smaller than 64 bytes, such as when we're inserting software breakpoints.
2024-11-26 21:01:25 +00:00
*/
if (
buffer.size() <= WchLinkInterface::MAX_PARTIAL_BLOCK_WRITE_SIZE
|| !this->fullBlockWriteCompatible(addressSpaceDescriptor, memorySegmentDescriptor, startAddress)
) {
Logger::debug("Using partial block write method");
return this->writeProgramMemoryPartialBlock(
addressSpaceDescriptor,
memorySegmentDescriptor,
startAddress,
buffer
);
}
Logger::debug("Using full block write method");
return this->writeProgramMemoryFullBlock(
addressSpaceDescriptor,
memorySegmentDescriptor,
startAddress,
buffer
);
}
this->riscVTranslator.writeMemory(
addressSpaceDescriptor,
memorySegmentDescriptor,
startAddress,
buffer
);
}
void WchLinkDebugInterface::eraseMemory(
const TargetAddressSpaceDescriptor& addressSpaceDescriptor,
const TargetMemorySegmentDescriptor& memorySegmentDescriptor
) {
2024-12-15 17:34:11 +00:00
if (memorySegmentDescriptor == this->mainProgramSegmentDescriptor) {
return this->wchLinkInterface.eraseProgramMemory();
}
2025-01-28 00:21:26 +00:00
Logger::debug("Ignoring erase operation on `" + memorySegmentDescriptor.key + "` segment - not supported");
}
void WchLinkDebugInterface::enableProgrammingMode() {
2024-12-08 23:33:39 +00:00
/*
* Nothing to do here
*
* We cannot prepare the WCH-Link tool for a programming session here, as the preparation process differs
* across the two types of flash write commands (full and partial block write). We don't know which command
2025-01-28 00:21:26 +00:00
* we'll be utilising at this point.
2024-12-08 23:33:39 +00:00
*/
}
void WchLinkDebugInterface::disableProgrammingMode() {
this->softwareBreakpointRegistry.clear();
}
void WchLinkDebugInterface::applyAccessRestrictions(TargetMemorySegmentDescriptor& memorySegmentDescriptor) {
if (memorySegmentDescriptor.type == TargetMemorySegmentType::FLASH) {
/*
2024-12-08 23:33:39 +00:00
* Actually, we *can* write to flash memory whilst in debug mode (via a partial block write), but we don't
* need to, so I'm just going to block it, for now.
*/
memorySegmentDescriptor.debugModeAccess.writeable = false;
}
}
void WchLinkDebugInterface::applyAccessRestrictions(Targets::TargetRegisterDescriptor& registerDescriptor) {
// I don't believe any further access restrictions are required for registers. TODO: Review after v2.0.0.
}
void WchLinkDebugInterface::setSoftwareBreakpoint(const TargetProgramBreakpoint& breakpoint) {
if (breakpoint.size != 2 && breakpoint.size != 4) {
throw Exception{"Invalid software breakpoint size (" + std::to_string(breakpoint.size) + ")"};
}
const auto originalData = this->readMemory(
breakpoint.addressSpaceDescriptor,
breakpoint.memorySegmentDescriptor,
breakpoint.address,
breakpoint.size,
{}
);
const auto softwareBreakpoint = ::Targets::RiscV::ProgramBreakpoint{
breakpoint,
static_cast<::Targets::RiscV::Opcodes::Opcode>(
breakpoint.size == 2
? (originalData[1] << 8) | originalData[0]
: (originalData[3] << 24) | (originalData[2] << 16) | (originalData[1] << 8) | originalData[0]
)
};
2025-01-28 00:21:26 +00:00
static constexpr auto EBREAK_OPCODE = std::to_array<unsigned char>({
static_cast<unsigned char>(::Targets::RiscV::Opcodes::Ebreak),
static_cast<unsigned char>(::Targets::RiscV::Opcodes::Ebreak >> 8),
static_cast<unsigned char>(::Targets::RiscV::Opcodes::Ebreak >> 16),
static_cast<unsigned char>(::Targets::RiscV::Opcodes::Ebreak >> 24)
});
2025-01-28 00:21:26 +00:00
static constexpr auto COMPRESSED_EBREAK_OPCODE = std::to_array<unsigned char>({
static_cast<unsigned char>(::Targets::RiscV::Opcodes::EbreakCompressed),
static_cast<unsigned char>(::Targets::RiscV::Opcodes::EbreakCompressed >> 8)
});
this->writeMemory(
softwareBreakpoint.addressSpaceDescriptor,
softwareBreakpoint.memorySegmentDescriptor,
softwareBreakpoint.address,
softwareBreakpoint.size == 2
2025-01-28 00:21:26 +00:00
? TargetMemoryBufferSpan{COMPRESSED_EBREAK_OPCODE}
: TargetMemoryBufferSpan{EBREAK_OPCODE}
);
this->softwareBreakpointRegistry.insert(softwareBreakpoint);
}
void WchLinkDebugInterface::clearSoftwareBreakpoint(const TargetProgramBreakpoint& breakpoint) {
if (breakpoint.size != 2 && breakpoint.size != 4) {
throw Exception{"Invalid software breakpoint size (" + std::to_string(breakpoint.size) + ")"};
}
const auto softwareBreakpointOpt = this->softwareBreakpointRegistry.find(breakpoint);
if (!softwareBreakpointOpt.has_value()) {
throw TargetOperationFailure{
"Unknown software breakpoint (byte address: 0x" + Services::StringService::toHex(breakpoint.address)
+ ")"
};
}
const auto& softwareBreakpoint = softwareBreakpointOpt->get();
if (!softwareBreakpoint.originalInstruction.has_value()) {
throw InternalFatalErrorException{"Missing original opcode"};
}
this->writeMemory(
softwareBreakpoint.addressSpaceDescriptor,
softwareBreakpoint.memorySegmentDescriptor,
softwareBreakpoint.address,
softwareBreakpoint.size == 2
? TargetMemoryBuffer{
static_cast<unsigned char>(*(softwareBreakpoint.originalInstruction)),
static_cast<unsigned char>(*(softwareBreakpoint.originalInstruction) >> 8)
}
: TargetMemoryBuffer{
static_cast<unsigned char>(*(softwareBreakpoint.originalInstruction)),
static_cast<unsigned char>(*(softwareBreakpoint.originalInstruction) >> 8),
static_cast<unsigned char>(*(softwareBreakpoint.originalInstruction) >> 16),
static_cast<unsigned char>(*(softwareBreakpoint.originalInstruction) >> 24)
}
);
this->softwareBreakpointRegistry.remove(softwareBreakpoint);
}
void WchLinkDebugInterface::writeProgramMemoryPartialBlock(
const TargetAddressSpaceDescriptor& addressSpaceDescriptor,
const TargetMemorySegmentDescriptor& memorySegmentDescriptor,
Targets::TargetMemoryAddress startAddress,
Targets::TargetMemoryBufferSpan buffer
) {
using Services::AlignmentService;
using namespace ::DebugToolDrivers::Protocols::RiscVDebugSpec;
if (buffer.empty()) {
return;
}
const auto bufferSize = static_cast<TargetMemorySize>(buffer.size());
const auto addressRange = TargetMemoryAddressRange{startAddress, startAddress + bufferSize - 1};
assert(memorySegmentDescriptor.addressRange.contains(addressRange));
/*
* Partial block writes can only write to a single flash page at a time. If a write operation spans multiple
* pages, the WCH-Link tool will write to the first page and ignore the rest, without reporting any error.
*
* We must break down write operations that span multiple pages.
*/
assert(memorySegmentDescriptor.pageSize.has_value());
const auto pages = addressRange.blocks(*memorySegmentDescriptor.pageSize);
if (pages.size() > 1) {
for (const auto& pageAddressRange : pages) {
this->writeProgramMemoryPartialBlock(
addressSpaceDescriptor,
memorySegmentDescriptor,
pageAddressRange.startAddress,
buffer.subspan(
pageAddressRange.startAddress - addressRange.startAddress,
pageAddressRange.size()
)
);
}
return;
}
// Partial block write operations must be 16-bit aligned.
static constexpr auto ALIGNMENT_SIZE = 2;
const auto alignedAddressRange = AlignmentService::alignAddressRange(addressRange, ALIGNMENT_SIZE);
if (alignedAddressRange != addressRange) {
const auto alignedBufferSize = alignedAddressRange.size();
const auto addressAlignmentBytes = static_cast<TargetMemorySize>(
addressRange.startAddress - alignedAddressRange.startAddress
);
const auto sizeAlignmentBytes = alignedBufferSize - bufferSize - addressAlignmentBytes;
auto alignedBuffer = addressAlignmentBytes > 0
? this->readMemory(
addressSpaceDescriptor,
memorySegmentDescriptor,
alignedAddressRange.startAddress,
addressAlignmentBytes,
{}
)
: TargetMemoryBuffer{};
alignedBuffer.resize(alignedBufferSize);
std::copy(buffer.begin(), buffer.end(), alignedBuffer.begin() + addressAlignmentBytes);
if (sizeAlignmentBytes > 0) {
const auto dataBack = this->readMemory(
addressSpaceDescriptor,
memorySegmentDescriptor,
addressRange.startAddress + bufferSize,
sizeAlignmentBytes,
{}
);
std::copy(
dataBack.begin(),
dataBack.end(),
alignedBuffer.begin() + addressAlignmentBytes + bufferSize
);
}
return this->writeProgramMemoryPartialBlock(
addressSpaceDescriptor,
memorySegmentDescriptor,
alignedAddressRange.startAddress,
alignedBuffer
);
}
/*
* WCH-Link tools seem to make use of the target's program buffer to service the partial block write
* command.
*
* This sometimes leads to exceptions occurring on the target, when the program buffer contains certain
* instructions before the partial block write command is invoked. This is why we clear the program buffer
* beforehand.
*/
this->riscVTranslator.clearProgramBuffer();
this->wchLinkInterface.writeFlashPartialBlock(startAddress, buffer);
/*
* Sometimes, when delegating part of a full block write operation to the partial block write method, a "busy"
* error occurs. However, this doesn't seem to affect the outcome of the operation at all.
*
* This only seems to happen when writing to the boot segment of the CH32V003, shortly after a full block write
* has taken place. It doesn't happen in the absence of a full block write.
*
* I suspect the tool may be attempting to verify the newly written data, and that is what's failing. But I
* really don't know.
*
* For now, I think it's safe to ignore the "busy" error.
*/
const auto commandError = this->riscVTranslator.readAndClearAbstractCommandError();
if (
commandError != DebugModule::AbstractCommandError::NONE
&& commandError != DebugModule::AbstractCommandError::BUSY
) {
throw Exception{
"Partial block write failed - abstract command error: 0x"
+ Services::StringService::toHex(commandError)
};
}
}
void WchLinkDebugInterface::writeProgramMemoryFullBlock(
const TargetAddressSpaceDescriptor& addressSpaceDescriptor,
const TargetMemorySegmentDescriptor& memorySegmentDescriptor,
Targets::TargetMemoryAddress startAddress,
Targets::TargetMemoryBufferSpan buffer
) {
using Services::AlignmentService;
using Services::StringService;
using namespace ::DebugToolDrivers::Protocols::RiscVDebugSpec;
if (buffer.empty()) {
return;
}
const auto bufferSize = static_cast<TargetMemorySize>(buffer.size());
const auto addressRange = TargetMemoryAddressRange{startAddress, startAddress + bufferSize - 1};
assert(memorySegmentDescriptor.addressRange.contains(addressRange));
auto alignedAddressRange = AlignmentService::alignAddressRange(addressRange, this->programmingBlockSize);
if (alignedAddressRange != addressRange) {
/*
* The memory segment capacity may not be a multiple of the (target-specific) block size, meaning alignment
* to the block size could result in breaching the boundary of the segment.
*
* For example, the CH32X035 has a block size of 4096, but its main program segment (`main_program`) has a
* capacity of 62KiB (63488 bytes), which is not a multiple of 4096. This means we cannot access the final,
* partial block of that segment, via a full block write.
*
* Some segments on some WCH RISC-V targets don't even have the capacity to accommodate the block size.
*
* This makes me suspect that
* 1. I may be using the wrong block size, and the actual size is smaller, or
* 2. Memory segment capacities could be wrong. I obtained these from the target datasheet.
*
* I have already tried experimenting with smaller block sizes, but nothing has worked. The WCH-Link tool
* seems to expect these exact sizes before it will begin the full block write operation.
*
* Anyway, if the alignment results in the segment boundary being breached, we delegate the final part
* of the write operation to the partial block write method, which only requires 16-bit alignment.
*
* In other words, we will write as many blocks as we can with the full block write method, and then write
* the final part with the partial block write method. This allows us to benefit from the performance of
* full block writes, whilst maintaining the ability to access the entire segment.
*/
auto delegatedBytes = TargetMemorySize{0};
if (!memorySegmentDescriptor.addressRange.contains(alignedAddressRange)) {
Logger::debug(
"Alignment to the block size (" + std::to_string(this->programmingBlockSize)
+ ") has resulted in a segment boundary breach"
);
alignedAddressRange.endAddress -= this->programmingBlockSize;
/*
* This function isn't designed to handle instances where the entire write operation needs to be
* delegated. In such instances, this function should not be called at all. The following assertion
* enforces this.
*
* The WchLinkDebugInterface::fullBlockWriteCompatible() function will determine if at least part of
* the operation can be performed using the full block write method.
*/
assert(alignedAddressRange.intersectsWith(addressRange));
delegatedBytes = addressRange.endAddress - alignedAddressRange.endAddress;
Logger::debug(
"The full block write has been reduced to " + std::to_string(alignedAddressRange.size())
+ " byte(s), from 0x" + StringService::toHex(alignedAddressRange.startAddress)
);
Logger::debug(std::to_string(delegatedBytes) + " byte(s) will be delegated to a partial write");
}
const auto alignedBufferSize = alignedAddressRange.size();
const auto addressAlignmentBytes = static_cast<TargetMemorySize>(
startAddress - alignedAddressRange.startAddress
);
const auto sizeAlignmentBytes = (alignedAddressRange.endAddress > addressRange.endAddress)
? alignedAddressRange.endAddress - addressRange.endAddress
: 0;
auto alignedBuffer = addressAlignmentBytes > 0
? this->readMemory(
addressSpaceDescriptor,
memorySegmentDescriptor,
alignedAddressRange.startAddress,
addressAlignmentBytes,
{}
)
: TargetMemoryBuffer{};
alignedBuffer.resize(alignedBufferSize);
std::copy(
buffer.begin(),
buffer.begin() + (bufferSize - delegatedBytes),
alignedBuffer.begin() + addressAlignmentBytes
);
if (sizeAlignmentBytes > 0) {
const auto dataBack = this->readMemory(
addressSpaceDescriptor,
memorySegmentDescriptor,
startAddress + bufferSize,
sizeAlignmentBytes,
{}
);
std::copy(
dataBack.begin(),
dataBack.end(),
alignedBuffer.begin() + addressAlignmentBytes + bufferSize
);
}
this->writeProgramMemoryFullBlock(
addressSpaceDescriptor,
memorySegmentDescriptor,
alignedAddressRange.startAddress,
alignedBuffer
);
if (delegatedBytes > 0) {
// Delegate the final part of the write operation to the partial write method
const auto delegatedStartAddress = alignedAddressRange.endAddress + 1;
const auto delegatedBuffer = buffer.subspan(bufferSize - delegatedBytes);
Logger::debug(
"Delegating write operation 0x" + StringService::toHex(delegatedStartAddress) + ", "
+ std::to_string(delegatedBuffer.size()) + " byte(s)"
);
this->writeProgramMemoryPartialBlock(
addressSpaceDescriptor,
memorySegmentDescriptor,
delegatedStartAddress,
delegatedBuffer
);
}
return;
}
this->wchLinkInterface.writeFlashFullBlocks(
startAddress,
buffer,
this->programmingBlockSize,
this->flashProgramOpcodes
);
/*
* Would this not be better placed in endProgrammingSession()? We could persist the command type we invoked to
* perform the write, and if required, reattach at the end of the programming session.
*
* I don't think that would work, because the target needs to be accessible for other operations whilst in
* programming mode. We may perform other operations in between program memory writes, but that wouldn't work
* if we left the target in an inaccessible state between writes. So I think we have to reattach here.
*
* TODO: Review after v2.0.0.
*/
this->deactivate();
this->wchLinkInterface.sendCommandAndWaitForResponse(Commands::Control::GetDeviceInfo{});
this->activate();
}
bool WchLinkDebugInterface::fullBlockWriteCompatible(
const TargetAddressSpaceDescriptor& addressSpaceDescriptor,
const TargetMemorySegmentDescriptor& memorySegmentDescriptor,
TargetMemoryAddress startAddress
) {
/*
* If we cannot access the entire segment via the full block write method (the segment capacity is not a
* multiple of the block size), we delegate the final part of the write operation to the partial write method.
*
* We use the end address of the final accessible block to determine if the write operation is contained
* within the inaccessible region of the segment. If it is, we must not attempt the write operation via the
* full block write, as the full block write code doesn't handle instances where the entire operation needs to
* be delegated.
*
* See the WchLinkDebugInterface::writeProgramMemoryFullBlock() member function for more.
*/
const auto finalBlockEnd = (
(memorySegmentDescriptor.addressRange.endAddress / this->programmingBlockSize) * this->programmingBlockSize
);
return addressSpaceDescriptor == this->sysAddressSpaceDescriptor
&& memorySegmentDescriptor.type == TargetMemorySegmentType::FLASH
&& memorySegmentDescriptor.size() >= this->programmingBlockSize
&& (memorySegmentDescriptor.addressRange.startAddress % this->programmingBlockSize) == 0
&& (memorySegmentDescriptor.size() % this->programmingBlockSize == 0 || startAddress <= finalBlockEnd)
;
}
std::span<const unsigned char> WchLinkDebugInterface::getFlashProgramOpcodes(const std::string& key) {
if (key == "op1") {
return FlashProgramOpcodes::FLASH_OP1;
}
if (key == "op2") {
return FlashProgramOpcodes::FLASH_OP2;
}
throw Targets::TargetDescription::Exceptions::InvalidTargetDescriptionDataException{
"Invalid programming_opcode_key value (\"" + key + "\")"
};
}
}