Files
BloomPatched/src/DebugToolDrivers/Microchip/Protocols/EDBG/AVR/EdbgAvr8Interface.cpp

1630 lines
68 KiB
C++

#include "EdbgAvr8Interface.hpp"
#include <thread>
#include <cassert>
#include <cmath>
#include "src/Services/PathService.hpp"
#include "src/Services/StringService.hpp"
#include "src/Logger/Logger.hpp"
#include "Exceptions/Avr8CommandFailure.hpp"
#include "src/TargetController/Exceptions/DeviceInitializationFailure.hpp"
#include "src/Targets/Microchip/AVR/AVR8/Exceptions/DebugWirePhysicalInterfaceError.hpp"
// Command frames
#include "CommandFrames/AVR8Generic/SetParameter.hpp"
#include "CommandFrames/AVR8Generic/GetParameter.hpp"
#include "CommandFrames/AVR8Generic/ActivatePhysical.hpp"
#include "CommandFrames/AVR8Generic/DeactivatePhysical.hpp"
#include "CommandFrames/AVR8Generic/Attach.hpp"
#include "CommandFrames/AVR8Generic/Detach.hpp"
#include "CommandFrames/AVR8Generic/Stop.hpp"
#include "CommandFrames/AVR8Generic/Step.hpp"
#include "CommandFrames/AVR8Generic/Run.hpp"
#include "CommandFrames/AVR8Generic/RunTo.hpp"
#include "CommandFrames/AVR8Generic/GetDeviceId.hpp"
#include "CommandFrames/AVR8Generic/Reset.hpp"
#include "CommandFrames/AVR8Generic/ReadMemory.hpp"
#include "CommandFrames/AVR8Generic/WriteMemory.hpp"
#include "CommandFrames/AVR8Generic/GetProgramCounter.hpp"
#include "CommandFrames/AVR8Generic/SetProgramCounter.hpp"
#include "CommandFrames/AVR8Generic/DisableDebugWire.hpp"
#include "CommandFrames/AVR8Generic/SetSoftwareBreakpoints.hpp"
#include "CommandFrames/AVR8Generic/ClearAllSoftwareBreakpoints.hpp"
#include "CommandFrames/AVR8Generic/ClearSoftwareBreakpoints.hpp"
#include "CommandFrames/AVR8Generic/SetHardwareBreakpoint.hpp"
#include "CommandFrames/AVR8Generic/ClearHardwareBreakpoint.hpp"
#include "CommandFrames/AVR8Generic/EnterProgrammingMode.hpp"
#include "CommandFrames/AVR8Generic/LeaveProgrammingMode.hpp"
#include "CommandFrames/AVR8Generic/EraseMemory.hpp"
#include "Parameters/AVR8Generic/DebugWireJtagParameters.hpp"
#include "Parameters/AVR8Generic/PdiParameters.hpp"
#include "Parameters/AVR8Generic/UpdiParameters.hpp"
// AVR events
#include "Events/AVR8Generic/BreakEvent.hpp"
namespace DebugToolDrivers::Microchip::Protocols::Edbg::Avr
{
using namespace Targets::Microchip::Avr;
using namespace Avr8Bit;
using namespace Exceptions;
using CommandFrames::Avr8Generic::Stop;
using CommandFrames::Avr8Generic::Run;
using CommandFrames::Avr8Generic::RunTo;
using CommandFrames::Avr8Generic::Step;
using CommandFrames::Avr8Generic::Reset;
using CommandFrames::Avr8Generic::GetProgramCounter;
using CommandFrames::Avr8Generic::SetProgramCounter;
using CommandFrames::Avr8Generic::GetDeviceId;
using CommandFrames::Avr8Generic::SetSoftwareBreakpoints;
using CommandFrames::Avr8Generic::ClearSoftwareBreakpoints;
using CommandFrames::Avr8Generic::ClearAllSoftwareBreakpoints;
using CommandFrames::Avr8Generic::SetHardwareBreakpoint;
using CommandFrames::Avr8Generic::ClearHardwareBreakpoint;
using CommandFrames::Avr8Generic::ReadMemory;
using CommandFrames::Avr8Generic::EnterProgrammingMode;
using CommandFrames::Avr8Generic::LeaveProgrammingMode;
using CommandFrames::Avr8Generic::SetParameter;
using CommandFrames::Avr8Generic::GetParameter;
using CommandFrames::Avr8Generic::ActivatePhysical;
using CommandFrames::Avr8Generic::DeactivatePhysical;
using CommandFrames::Avr8Generic::Attach;
using CommandFrames::Avr8Generic::Detach;
using CommandFrames::Avr8Generic::ReadMemory;
using CommandFrames::Avr8Generic::WriteMemory;
using CommandFrames::Avr8Generic::EraseMemory;
using CommandFrames::Avr8Generic::DisableDebugWire;
using Targets::TargetAddressSpaceDescriptor;
using Targets::TargetMemorySegmentType;
using Targets::TargetState;
using Targets::TargetPhysicalInterface;
using Targets::TargetMemoryType;
using Targets::TargetMemoryBuffer;
using Targets::TargetMemoryAddress;
using Targets::TargetMemorySize;
using Targets::TargetRegister;
using Targets::TargetRegisterDescriptor;
using Targets::TargetRegisterDescriptors;
using Targets::TargetRegisterDescriptorId;
using Targets::TargetRegisterDescriptorIds;
using Targets::TargetRegisters;
EdbgAvr8Interface::EdbgAvr8Interface(
EdbgInterface* edbgInterface,
const Targets::Microchip::Avr::Avr8Bit::TargetDescriptionFile& targetDescriptionFile,
const Targets::Microchip::Avr::Avr8Bit::Avr8TargetConfig& targetConfig
)
: edbgInterface(edbgInterface)
, session(EdbgAvr8Session(targetDescriptionFile, targetConfig))
{}
void EdbgAvr8Interface::init() {
if (this->session.configVariant == Avr8ConfigVariant::XMEGA) {
// Default PDI clock to 4MHz
// TODO: Make this adjustable via a target config parameter
this->setParameter(Avr8EdbgParameters::PDI_CLOCK_SPEED, static_cast<std::uint16_t>(4000));
}
if (this->session.configVariant == Avr8ConfigVariant::UPDI) {
// Default UPDI clock to 1.8MHz
this->setParameter(Avr8EdbgParameters::PDI_CLOCK_SPEED, static_cast<std::uint16_t>(1800));
this->setParameter(Avr8EdbgParameters::ENABLE_HIGH_VOLTAGE_UPDI, static_cast<std::uint8_t>(0));
}
if (this->session.configVariant == Avr8ConfigVariant::MEGAJTAG) {
// Default clock value for mega debugging is 200KHz
// TODO: Make this adjustable via a target config parameter
this->setParameter(Avr8EdbgParameters::MEGA_DEBUG_CLOCK, static_cast<std::uint16_t>(200));
this->setParameter(Avr8EdbgParameters::JTAG_DAISY_CHAIN_SETTINGS, static_cast<std::uint32_t>(0));
}
this->setParameter(
Avr8EdbgParameters::CONFIG_VARIANT,
static_cast<std::uint8_t>(this->session.configVariant)
);
this->setParameter(
Avr8EdbgParameters::CONFIG_FUNCTION,
static_cast<std::uint8_t>(Avr8ConfigFunction::DEBUGGING)
);
this->setParameter(
Avr8EdbgParameters::PHYSICAL_INTERFACE,
getPhysicalInterfaceToAvr8IdMapping().at(this->session.targetConfig.physicalInterface)
);
this->setTargetParameters();
}
void EdbgAvr8Interface::stop() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
Stop()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Stop target command failed", responseFrame);
}
if (this->getTargetState() == TargetState::RUNNING) {
this->waitForStoppedEvent();
}
}
void EdbgAvr8Interface::run() {
this->clearEvents();
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
Run()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Run command failed", responseFrame);
}
this->targetState = TargetState::RUNNING;
}
void EdbgAvr8Interface::runTo(TargetMemoryAddress address) {
this->clearEvents();
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
RunTo(address)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Run-to command failed", responseFrame);
}
this->targetState = TargetState::RUNNING;
}
void EdbgAvr8Interface::step() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
Step()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Step target command failed", responseFrame);
}
this->targetState = TargetState::RUNNING;
}
void EdbgAvr8Interface::reset() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
Reset()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Reset target command failed", responseFrame);
}
try {
// Wait for stopped event
this->waitForStoppedEvent();
} catch (const Exception& exception) {
throw Exception("Failed to reset AVR8 target - missing stopped event.");
}
/*
* Issuing another command immediately after reset sometimes results in an 'illegal target state' error from
* the EDBG debug tool. Even though we waited for the break event.
*
* All we can really do here is introduce a small delay, to ensure that we're not issuing commands too quickly
* after reset.
*/
std::this_thread::sleep_for(std::chrono::milliseconds(250));
}
void EdbgAvr8Interface::activate() {
if (!this->physicalInterfaceActivated) {
try {
this->activatePhysical();
} catch (const Avr8CommandFailure& activationException) {
if (
this->session.targetConfig.physicalInterface == TargetPhysicalInterface::DEBUG_WIRE
&& (
activationException.code == Avr8CommandFailureCode::DEBUGWIRE_PHYSICAL_ERROR
|| activationException.code == Avr8CommandFailureCode::FAILED_TO_ENABLE_OCD
)
) {
throw DebugWirePhysicalInterfaceError(
"Failed to activate the debugWire physical interface - check target connection. "
"If the target was recently programmed via ISP, try cycling the target power. See "
+ Services::PathService::homeDomainName() + "/docs/debugging-avr-debugwire for more information."
);
}
throw activationException;
}
}
if (!this->targetAttached) {
this->attach();
}
}
void EdbgAvr8Interface::deactivate() {
if (this->targetAttached) {
if (
this->session.targetConfig.physicalInterface == TargetPhysicalInterface::DEBUG_WIRE
&& this->session.targetConfig.disableDebugWireOnDeactivate
) {
try {
this->disableDebugWire();
Logger::warning(
"Successfully disabled debugWire on the AVR8 target - this is only temporary - "
"the debugWire module has lost control of the RESET pin. Bloom may no longer be able to "
"interface with the target until the next power cycle."
);
} catch (const Exception& exception) {
// Failing to disable debugWire should never prevent us from proceeding with target deactivation.
Logger::error(exception.getMessage());
}
}
this->detach();
}
if (this->physicalInterfaceActivated) {
this->deactivatePhysical();
}
}
TargetMemoryAddress EdbgAvr8Interface::getProgramCounter() {
if (this->targetState != TargetState::STOPPED) {
this->stop();
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
GetProgramCounter()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Get program counter command failed", responseFrame);
}
return responseFrame.extractProgramCounter();
}
void EdbgAvr8Interface::setProgramCounter(TargetMemoryAddress programCounter) {
if (this->targetState != TargetState::STOPPED) {
this->stop();
}
/*
* The program counter will be given in byte address form, but the EDBG tool will be expecting it in word
* address (16-bit) form. This is why we divide it by 2.
*/
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
SetProgramCounter(programCounter / 2)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Set program counter command failed", responseFrame);
}
}
TargetSignature EdbgAvr8Interface::getDeviceId() {
if (this->session.configVariant == Avr8ConfigVariant::UPDI) {
/*
* When using the UPDI physical interface, the 'Get device ID' command behaves in an odd manner, where it
* doesn't actually return the target signature, but instead a fixed four byte string reading:
* 'A', 'V', 'R' and ' ' (white space).
*
* So it appears we cannot use that command for UPDI sessions. As an alternative, we will just read the
* signature from memory using the signature base address.
*
* TODO: Currently, we're assuming the signature will always only ever be three bytes in size, but we may
* want to consider pulling the size from the TDF.
*/
const auto signatureMemory = this->readMemory(
Avr8MemoryType::SRAM,
this->session.signatureMemorySegment.startAddress,
3
);
if (signatureMemory.size() != 3) {
throw Exception("Failed to read AVR8 signature from target - unexpected response size");
}
return {signatureMemory[0], signatureMemory[1], signatureMemory[2]};
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
GetDeviceId()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Get device ID command failed", responseFrame);
}
return responseFrame.extractSignature(this->session.targetConfig.physicalInterface);
}
void EdbgAvr8Interface::setSoftwareBreakpoint(TargetMemoryAddress address) {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
SetSoftwareBreakpoints({address})
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Set software breakpoint command failed", responseFrame);
}
}
void EdbgAvr8Interface::clearSoftwareBreakpoint(TargetMemoryAddress address) {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
ClearSoftwareBreakpoints({address})
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Clear software breakpoint command failed", responseFrame);
}
}
void EdbgAvr8Interface::setHardwareBreakpoint(TargetMemoryAddress address) {
static const auto getAvailableBreakpointNumbers = [this] () {
auto breakpointNumbers = std::set<std::uint8_t>({1, 2, 3});
for (const auto& [address, allocatedNumber] : this->hardwareBreakpointNumbersByAddress) {
breakpointNumbers.erase(allocatedNumber);
}
return breakpointNumbers;
};
const auto availableBreakpointNumbers = getAvailableBreakpointNumbers();
if (availableBreakpointNumbers.empty()) {
throw Exception("Maximum hardware breakpoints have been allocated");
}
const auto breakpointNumber = *(availableBreakpointNumbers.begin());
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
SetHardwareBreakpoint(address, breakpointNumber)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Set hardware breakpoint command failed", responseFrame);
}
this->hardwareBreakpointNumbersByAddress.insert(std::pair(address, breakpointNumber));
}
void EdbgAvr8Interface::clearHardwareBreakpoint(TargetMemoryAddress address) {
const auto breakpointNumberIt = this->hardwareBreakpointNumbersByAddress.find(address);
if (breakpointNumberIt == this->hardwareBreakpointNumbersByAddress.end()) {
Logger::error("No hardware breakpoint at byte address 0x" + Services::StringService::toHex(address));
return;
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
ClearHardwareBreakpoint(breakpointNumberIt->second)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Clear hardware breakpoint command failed", responseFrame);
}
this->hardwareBreakpointNumbersByAddress.erase(address);
}
void EdbgAvr8Interface::clearAllBreakpoints() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
ClearAllSoftwareBreakpoints()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Clear all software breakpoints command failed", responseFrame);
}
// Clear all hardware breakpoints
while (!this->hardwareBreakpointNumbersByAddress.empty()) {
this->clearHardwareBreakpoint(this->hardwareBreakpointNumbersByAddress.begin()->first);
}
}
TargetRegisters EdbgAvr8Interface::readRegisters(const TargetRegisterDescriptorIds& descriptorIds) {
/*
* This function needs to be fast. Insight eagerly requests the values of all known registers that it can
* present to the user. It does this on numerous occasions (target stopped, user clicked refresh, etc). This
* means we will be frequently loading over 100 register values in a single instance.
*
* For the above reason, we do not read each register value individually. That would take far too long if we
* have over 100 registers to read. Instead, we group the register descriptors into collections by register
* type, and resolve the address range for each collection. We then perform a single read operation for
* each collection and hold the memory buffer in a random access container (std::vector). Finally, we extract
* the data for each register descriptor, from the memory buffer, and construct the relevant TargetRegister
* object.
*
* TODO: We should be grouping the register descriptors by memory type, as opposed to register type. This
* isn't much of a problem ATM, as currently, we only work with registers that are stored in the data
* address space or the register file. This will need to be addressed before we can work with any other
* registers stored elsewhere.
*/
auto output = TargetRegisters();
// Group descriptors by type and resolve the address range for each type
auto descriptorIdsByType = std::map<TargetRegisterType, std::set<TargetRegisterDescriptorId>>();
/*
* An address range is just an std::pair of addresses - the first being the start address, the second being
* the end address.
*
* TODO: Can't we just use the TargetMemoryAddressRange struct here? Review
*/
using AddressRange = std::pair<TargetMemoryAddress, TargetMemoryAddress>;
auto addressRangeByType = std::map<TargetRegisterType, AddressRange>();
for (const auto& descriptorId : descriptorIds) {
const auto descriptorIt = this->targetRegisterDescriptorsById.find(descriptorId);
assert(descriptorIt != this->targetRegisterDescriptorsById.end());
const auto& descriptor = descriptorIt->second;
if (!descriptor.startAddress.has_value()) {
Logger::debug(
"Attempted to read register in the absence of a start address - register name: "
+ descriptor.name.value_or("unknown")
);
continue;
}
descriptorIdsByType[descriptor.type].insert(descriptor.id);
const auto startAddress = descriptor.startAddress.value();
const auto endAddress = startAddress + (descriptor.size - 1);
const auto addressRangeIt = addressRangeByType.find(descriptor.type);
if (addressRangeIt == addressRangeByType.end()) {
addressRangeByType[descriptor.type] = AddressRange(startAddress, endAddress);
} else {
auto& addressRange = addressRangeIt->second;
if (startAddress < addressRange.first) {
addressRange.first = startAddress;
}
if (endAddress > addressRange.second) {
addressRange.second = endAddress;
}
}
}
/*
* Now that we have our address ranges and grouped descriptors, we can perform a single read call for each
* register type.
*/
for (const auto&[registerType, descriptorIds] : descriptorIdsByType) {
const auto& addressRange = addressRangeByType[registerType];
const auto startAddress = addressRange.first;
const auto endAddress = addressRange.second;
const auto readSize = (endAddress - startAddress) + 1;
const auto memoryType = (registerType != TargetRegisterType::GENERAL_PURPOSE_REGISTER)
? Avr8MemoryType::SRAM
: (this->session.configVariant == Avr8ConfigVariant::XMEGA || this->session.configVariant == Avr8ConfigVariant::UPDI
? Avr8MemoryType::REGISTER_FILE
: Avr8MemoryType::SRAM);
/*
* When reading the entire range, we must avoid any attempts to access the OCD data register (OCDDR), as
* the debug tool will reject the command and respond with a 0x36 error code (invalid address error).
*
* For this reason, we specify the OCDDR address as an excluded address. This will mean
* the EdbgAvr8Interface::readMemory() function will employ the masked read memory command, as opposed to
* the general read memory command. The masked read memory command allows us to specify which addresses to
* read and which ones to ignore. For ignored addresses, the debug tool will just return a 0x00 byte.
* For more info, see section 7.1.22 titled 'Memory Read Masked', in the EDBG protocol document.
*
* Interestingly, the masked read memory command doesn't seem to require us to explicitly specify the OCDDR
* address as an excluded address. It seems to exclude the OCDDR automatically, even if we've not
* instructed it to do so. This is plausible, as we send the OCDDR address to the debug tool during target
* initialisation (see EdbgAvr8Interface::setDebugWireAndJtagParameters()). So this means we don't have to
* specify the OCDDR address as an excluded address, but the EdbgAvr8Interface::readMemory() function will
* only employ the masked read memory command when we supply at least one excluded address. For this reason,
* we still pass the OCDDR address to EdbgAvr8Interface::readMemory(), as an excluded address (provided we
* have it).
*
* See CommandFrames::Avr8Generic::ReadMemory(); and the Microchip EDBG documentation for more.
*/
auto excludedAddresses = std::set<TargetMemoryAddress>();
if (memoryType == Avr8MemoryType::SRAM && this->targetParameters.ocdDataRegister.has_value()) {
excludedAddresses.insert(
this->targetParameters.ocdDataRegister.value()
+ this->targetParameters.mappedIoSegmentStartAddress.value_or(0)
);
}
const auto flatMemoryData = this->readMemory(
memoryType,
startAddress,
readSize,
excludedAddresses
);
if (flatMemoryData.size() != readSize) {
throw Exception(
"Failed to read memory within register type address range (" + std::to_string(startAddress)
+ " - " + std::to_string(endAddress) + "). Expected " + std::to_string(readSize)
+ " bytes, got " + std::to_string(flatMemoryData.size())
);
}
// Construct our TargetRegister objects directly from the flat memory buffer
for (const auto descriptorId : descriptorIds) {
const auto descriptorIt = this->targetRegisterDescriptorsById.find(descriptorId);
const auto& descriptor = descriptorIt->second;
/*
* Multibyte AVR8 registers are stored in LSB form.
*
* This is why we use reverse iterators when extracting our data from flatMemoryData. Doing so allows
* us to extract the data in MSB form (as is expected for all register values held in TargetRegister
* objects).
*/
const auto bufferStartIt = flatMemoryData.rend() - (descriptor.startAddress.value() - startAddress)
- descriptor.size;
output.emplace_back(
TargetRegister(
descriptor.id,
TargetMemoryBuffer(bufferStartIt, bufferStartIt + descriptor.size)
)
);
}
}
return output;
}
void EdbgAvr8Interface::writeRegisters(const Targets::TargetRegisters& registers) {
for (const auto& reg : registers) {
const auto& registerDescriptorIt = this->targetRegisterDescriptorsById.find(reg.descriptorId);
assert(registerDescriptorIt != this->targetRegisterDescriptorsById.end());
const auto& registerDescriptor = registerDescriptorIt->second;
auto registerValue = reg.value;
if (registerValue.empty()) {
throw Exception("Cannot write empty register value");
}
if (registerValue.size() > registerDescriptor.size) {
throw Exception("Register value exceeds size specified by register descriptor.");
}
if (registerValue.size() < registerDescriptor.size) {
// Fill the missing most-significant bytes with 0x00
registerValue.insert(registerValue.begin(), registerDescriptor.size - registerValue.size(), 0x00);
}
if (registerValue.size() > 1) {
// AVR8 registers are stored in LSB
std::reverse(registerValue.begin(), registerValue.end());
}
auto memoryType = Avr8MemoryType::SRAM;
if (
registerDescriptor.type == TargetRegisterType::GENERAL_PURPOSE_REGISTER
&& (this->session.configVariant == Avr8ConfigVariant::XMEGA || this->session.configVariant == Avr8ConfigVariant::UPDI)
) {
memoryType = Avr8MemoryType::REGISTER_FILE;
}
// TODO: This can be inefficient when updating many registers, maybe do something a little smarter here.
this->writeMemory(
memoryType,
registerDescriptor.startAddress.value(),
registerValue
);
}
}
TargetMemoryBuffer EdbgAvr8Interface::readMemory(
TargetMemoryType memoryType,
TargetMemoryAddress startAddress,
TargetMemorySize bytes,
const std::set<Targets::TargetMemoryAddressRange>& excludedAddressRanges
) {
if (this->programmingModeEnabled && memoryType == TargetMemoryType::RAM) {
throw Exception("Cannot access RAM when programming mode is enabled");
}
auto avr8MemoryType = Avr8MemoryType::SRAM;
switch (memoryType) {
case TargetMemoryType::RAM: {
avr8MemoryType = Avr8MemoryType::SRAM;
break;
}
case TargetMemoryType::FLASH: {
if (
this->configVariant == Avr8ConfigVariant::DEBUG_WIRE
|| this->configVariant == Avr8ConfigVariant::UPDI
) {
avr8MemoryType = Avr8MemoryType::FLASH_PAGE;
} else if (this->configVariant == Avr8ConfigVariant::MEGAJTAG) {
avr8MemoryType = this->programmingModeEnabled ? Avr8MemoryType::FLASH_PAGE : Avr8MemoryType::SPM;
} else if (this->configVariant == Avr8ConfigVariant::XMEGA) {
const auto bootSectionStartAddress = this->targetParameters.bootSectionStartAddress.value();
if (startAddress >= bootSectionStartAddress) {
avr8MemoryType = Avr8MemoryType::BOOT_FLASH;
/*
* When using the BOOT_FLASH memory type, the address should be relative to the start of the
* boot section.
*/
startAddress -= bootSectionStartAddress;
} else {
/*
* When using the APPL_FLASH memory type, the address should be relative to the start of the
* application section.
*/
startAddress -= this->targetParameters.appSectionStartAddress.value();
avr8MemoryType = Avr8MemoryType::APPL_FLASH;
}
}
break;
}
case TargetMemoryType::EEPROM: {
// For JTAG targets, we must use the EEPROM_PAGE memory type when in programming mode.
avr8MemoryType = (this->configVariant == Avr8ConfigVariant::MEGAJTAG && this->programmingModeEnabled)
? Avr8MemoryType::EEPROM_PAGE
: Avr8MemoryType::EEPROM;
if (this->configVariant == Avr8ConfigVariant::XMEGA) {
// EEPROM addresses should be in relative form, for XMEGA (PDI) targets
startAddress -= this->targetParameters.eepromStartAddress.value();
}
break;
}
case TargetMemoryType::FUSES: {
avr8MemoryType = Avr8MemoryType::FUSES;
break;
}
default: {
break;
}
}
/*
* The internal readMemory() function accepts excluded addresses in the form of a set of addresses, as
* opposed to a set of address ranges.
*
* We will perform the conversion here.
*/
auto excludedAddresses = std::set<TargetMemoryAddress>();
auto endAddress = startAddress + bytes - 1;
for (const auto& addressRange : excludedAddressRanges) {
if (addressRange.startAddress > endAddress) {
// This address range is outside of the range from which we will be reading
continue;
}
for (auto i = addressRange.startAddress; i <= addressRange.endAddress; i++) {
excludedAddresses.insert(i);
}
}
return this->readMemory(avr8MemoryType, startAddress, bytes, excludedAddresses);
}
void EdbgAvr8Interface::writeMemory(
TargetMemoryType memoryType,
TargetMemoryAddress startAddress,
const TargetMemoryBuffer& buffer
) {
auto avr8MemoryType = Avr8MemoryType::SRAM;
switch (memoryType) {
case TargetMemoryType::RAM: {
avr8MemoryType = Avr8MemoryType::SRAM;
break;
}
case TargetMemoryType::FLASH: {
if (
this->session.configVariant == Avr8ConfigVariant::DEBUG_WIRE
|| this->session.configVariant == Avr8ConfigVariant::UPDI
|| this->session.configVariant == Avr8ConfigVariant::MEGAJTAG
) {
avr8MemoryType = Avr8MemoryType::FLASH_PAGE;
} else if (this->session.configVariant == Avr8ConfigVariant::XMEGA) {
const auto bootSectionStartAddress = this->session.programBootSection.value().get().startAddress;
if (startAddress >= bootSectionStartAddress) {
avr8MemoryType = Avr8MemoryType::BOOT_FLASH;
/*
* When using the BOOT_FLASH memory type, the address should be relative to the start of the
* boot section.
*/
startAddress -= bootSectionStartAddress;
} else {
/*
* When using the APPL_FLASH memory type, the address should be relative to the start of the
* application section.
*/
startAddress -= this->session.programAppSection.value().get().startAddress;
avr8MemoryType = Avr8MemoryType::APPL_FLASH;
}
}
break;
}
case TargetMemoryType::EEPROM: {
switch (this->session.configVariant) {
case Avr8ConfigVariant::UPDI:
case Avr8ConfigVariant::XMEGA: {
avr8MemoryType = Avr8MemoryType::EEPROM_ATOMIC;
if (this->session.configVariant == Avr8ConfigVariant::XMEGA) {
// EEPROM addresses should be in relative form, for XMEGA (PDI) targets
startAddress -= this->session.eepromMemorySegment.startAddress;
}
break;
}
case Avr8ConfigVariant::MEGAJTAG: {
avr8MemoryType = this->programmingModeEnabled
? Avr8MemoryType::EEPROM_PAGE
: Avr8MemoryType::EEPROM;
break;
}
default: {
avr8MemoryType = Avr8MemoryType::EEPROM;
break;
}
}
break;
}
case TargetMemoryType::FUSES: {
avr8MemoryType = Avr8MemoryType::FUSES;
break;
}
default: {
break;
}
}
return this->writeMemory(avr8MemoryType, startAddress, buffer);
}
void EdbgAvr8Interface::eraseProgramMemory(std::optional<Avr8Bit::ProgramMemorySection> section) {
if (this->session.configVariant == Avr8ConfigVariant::DEBUG_WIRE) {
// The EDBG erase command does not work on debugWire targets - we'll just write to the memory instead
return this->writeMemory(
TargetMemoryType::FLASH,
this->session.programMemorySegment.startAddress,
TargetMemoryBuffer(this->session.programMemorySegment.size, 0xFF)
);
}
if (this->session.configVariant == Avr8ConfigVariant::XMEGA) {
// For PDI (XMEGA) targets, we can erase flash memory without erasing EEPROM
if (!section.has_value() || *section == Avr8Bit::ProgramMemorySection::BOOT) {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
EraseMemory(Avr8EraseMemoryMode::BOOT_SECTION)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 erase memory command (for BOOT section) failed", responseFrame);
}
}
if (!section.has_value() || *section == Avr8Bit::ProgramMemorySection::APPLICATION) {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
EraseMemory(Avr8EraseMemoryMode::APPLICATION_SECTION)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure(
"AVR8 erase memory command (for APPLICATION section) failed",
responseFrame
);
}
}
return;
}
throw Exception("JTAG and UPDI targets do not support program memory erase.");
}
void EdbgAvr8Interface::eraseChip() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
EraseMemory(Avr8EraseMemoryMode::CHIP)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 erase memory command failed", responseFrame);
}
}
TargetState EdbgAvr8Interface::getTargetState() {
/*
* We are not informed when a target goes from a stopped state to a running state, so there is no need
* to query the tool when we already know the target has stopped.
*
* This means we have to rely on the assumption that the target cannot enter a running state without
* our instruction.
*/
if (this->targetState != TargetState::STOPPED) {
this->refreshTargetState();
}
return this->targetState;
}
void EdbgAvr8Interface::enableProgrammingMode() {
if (this->programmingModeEnabled) {
return;
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
EnterProgrammingMode()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("Failed to enter programming mode on EDBG debug tool", responseFrame);
}
this->programmingModeEnabled = true;
this->hardwareBreakpointNumbersByAddress.clear();
}
void EdbgAvr8Interface::disableProgrammingMode() {
if (!this->programmingModeEnabled) {
return;
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
LeaveProgrammingMode()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("Failed to leave programming mode on EDBG debug tool", responseFrame);
}
this->programmingModeEnabled = false;
if (this->session.configVariant == Avr8ConfigVariant::MEGAJTAG && this->reactivateJtagTargetPostProgrammingMode) {
this->deactivatePhysical();
this->targetAttached = false;
this->activate();
}
}
void EdbgAvr8Interface::setTargetParameters() {
switch (this->session.configVariant) {
case Avr8ConfigVariant::DEBUG_WIRE:
case Avr8ConfigVariant::MEGAJTAG: {
this->setDebugWireAndJtagParameters();
break;
}
case Avr8ConfigVariant::XMEGA: {
this->setPdiParameters();
break;
}
case Avr8ConfigVariant::UPDI: {
this->setUpdiParameters();
break;
}
default: {
break;
}
}
}
void EdbgAvr8Interface::setParameter(const Avr8EdbgParameter& parameter, const std::vector<unsigned char>& value) {
using Services::StringService;
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
SetParameter(parameter, value)
);
Logger::debug(
"Setting AVR8 EDBG parameter (context: 0x" + StringService::toHex(parameter.context) + ", id: 0x"
+ StringService::toHex(parameter.id) + ", value: 0x" + StringService::toHex(value) + ")"
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("Failed to set parameter on device!", responseFrame);
}
}
std::vector<unsigned char> EdbgAvr8Interface::getParameter(const Avr8EdbgParameter& parameter, std::uint8_t size) {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
GetParameter(parameter, size)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("Failed to get parameter from device!", responseFrame);
}
return responseFrame.getPayloadData();
}
void EdbgAvr8Interface::setDebugWireAndJtagParameters() {
const auto parameters = Parameters::Avr8Generic::DebugWireJtagParameters(this->session.targetDescriptionFile);
Logger::debug("Setting FLASH_PAGE_SIZE AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_FLASH_PAGE_SIZE, parameters.flashPageSize);
Logger::debug("Setting FLASH_SIZE AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_FLASH_SIZE, parameters.flashSize);
Logger::debug("Setting FLASH_BASE AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_FLASH_BASE, parameters.flashStartWordAddress);
if (parameters.bootSectionStartWordAddress.has_value()) {
Logger::debug("Setting BOOT_START_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_BOOT_START_ADDR, *(parameters.bootSectionStartWordAddress));
}
Logger::debug("Setting SRAM_START AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_SRAM_START, parameters.ramStartAddress);
Logger::debug("Setting EEPROM_SIZE AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_EEPROM_SIZE, parameters.eepromSize);
Logger::debug("Setting EEPROM_PAGE_SIZE AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_EEPROM_PAGE_SIZE, parameters.eepromPageSize);
Logger::debug("Setting OCD_REVISION AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_OCD_REVISION, parameters.ocdRevision);
Logger::debug("Setting OCD_DATA_REGISTER AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_OCD_DATA_REGISTER, parameters.ocdDataRegister);
Logger::debug("Setting EEARL_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_EEARL_ADDR, parameters.eepromAddressRegisterLow);
Logger::debug("Setting EEARH_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_EEARH_ADDR, parameters.eepromAddressRegisterHigh);
Logger::debug("Setting EECR_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_EECR_ADDR, parameters.eepromControlRegisterAddress);
Logger::debug("Setting EEDR_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_EEDR_ADDR, parameters.eepromDataRegisterAddress);
Logger::debug("Setting SPMCR_REGISTER AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_SPMCR_REGISTER, parameters.spmcRegisterStartAddress);
Logger::debug("Setting OSCCAL_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_OSCCAL_ADDR, parameters.osccalAddress);
}
void EdbgAvr8Interface::setPdiParameters() {
const auto parameters = Parameters::Avr8Generic::PdiParameters(this->session.targetDescriptionFile);
Logger::debug("Setting APPL_BASE_ADDR AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_APPL_BASE_ADDR, parameters.appSectionPdiOffset);
Logger::debug("Setting BOOT_BASE_ADDR AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_BOOT_BASE_ADDR, parameters.bootSectionPdiOffset);
Logger::debug("Setting EEPROM_BASE_ADDR AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_EEPROM_BASE_ADDR, parameters.eepromPdiOffset);
Logger::debug("Setting FUSE_BASE_ADDR AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_FUSE_BASE_ADDR, parameters.fuseRegistersPdiOffset);
Logger::debug("Setting LOCKBIT_BASE_ADDR AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_LOCKBIT_BASE_ADDR, parameters.lockRegistersPdiOffset);
Logger::debug("Setting USER_SIGN_BASE_ADDR AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_USER_SIGN_BASE_ADDR, parameters.userSignaturesPdiOffset);
Logger::debug("Setting PROD_SIGN_BASE_ADDR AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_PROD_SIGN_BASE_ADDR, parameters.prodSignaturesPdiOffset);
Logger::debug("Setting DATA_BASE_ADDR AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_DATA_BASE_ADDR, parameters.ramPdiOffset);
Logger::debug("Setting APPLICATION_BYTES AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_APPLICATION_BYTES, parameters.appSectionSize);
Logger::debug("Setting BOOT_BYTES AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_BOOT_BYTES, parameters.bootSectionSize);
Logger::debug("Setting FLASH_PAGE_BYTES AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_FLASH_PAGE_BYTES, parameters.flashPageSize);
Logger::debug("Setting EEPROM_SIZE AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_EEPROM_SIZE, parameters.eepromSize);
Logger::debug("Setting EEPROM_PAGE_SIZE AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_EEPROM_PAGE_SIZE, parameters.eepromPageSize);
Logger::debug("Setting NVM_BASE AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_NVM_BASE, parameters.nvmModuleBaseAddress);
Logger::debug("Setting SIGNATURE_OFFSET AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_SIGNATURE_OFFSET, parameters.signaturesPdiOffset);
}
void EdbgAvr8Interface::setUpdiParameters() {
const auto parameters = Parameters::Avr8Generic::UpdiParameters(this->session.targetDescriptionFile);
/*
* The program memory base address field for UPDI sessions (DEVICE_UPDI_PROGMEM_BASE_ADDR) seems to be
* limited to two bytes in size, as opposed to the four byte size for the debugWire, JTAG and PDI
* equivalent fields. This is why, I suspect, another field was required for the most significant byte of
* the program memory base address (DEVICE_UPDI_PROGMEM_BASE_ADDR_MSB).
*
* The additional DEVICE_UPDI_PROGMEM_BASE_ADDR_MSB field is only one byte in size, so it brings the total
* capacity for the program memory base address to three bytes. Because of this, we ensure that all TDFs,
* for targets that support UPDI, specify an address that does not exceed the maximum value of a 24 bit
* unsigned integer. This is done in our TDF validation script (see src/Targets/TargetDescription/README.md
* for more).
*/
Logger::debug("Setting UPDI_PROGMEM_BASE_ADDR AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_PROGMEM_BASE_ADDR,
static_cast<std::uint16_t>(parameters.programMemoryStartAddress)
);
Logger::debug("Setting UPDI_PROGMEM_BASE_ADDR_MSB AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_PROGMEM_BASE_ADDR_MSB,
static_cast<std::uint8_t>(parameters.programMemoryStartAddress >> 16)
);
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_24_BIT_ADDRESSING_ENABLE,
parameters.programMemoryStartAddress > 0xFFFF
? static_cast<std::uint8_t>(1)
: static_cast<std::uint8_t>(0)
);
/*
* See the comment above regarding capacity limitations of the DEVICE_UPDI_PROGMEM_BASE_ADDR field.
*
* The same applies here, for the flash page size field (DEVICE_UPDI_FLASH_PAGE_SIZE).
*/
Logger::debug("Setting UPDI_FLASH_PAGE_SIZE AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_FLASH_PAGE_SIZE,
static_cast<std::uint8_t>(parameters.flashPageSize)
);
Logger::debug("Setting UPDI_FLASH_PAGE_SIZE_MSB AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_FLASH_PAGE_SIZE_MSB,
static_cast<std::uint8_t>(parameters.flashPageSize >> 8)
);
Logger::debug("Setting UPDI_EEPROM_PAGE_SIZE AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_EEPROM_PAGE_SIZE, parameters.eepromPageSize);
Logger::debug("Setting UPDI_NVMCTRL_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_NVMCTRL_ADDR, parameters.nvmModuleBaseAddress);
Logger::debug("Setting UPDI_OCD_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_OCD_ADDR, parameters.ocdModuleAddress);
Logger::debug("Setting UPDI_FLASH_SIZE AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_FLASH_SIZE, parameters.flashSize);
Logger::debug("Setting UPDI_EEPROM_SIZE AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_EEPROM_SIZE, parameters.eepromSize);
Logger::debug("Setting UPDI_EEPROM_BASE_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_EEPROM_BASE_ADDR, parameters.eepromStartAddress);
Logger::debug("Setting UPDI_SIG_BASE_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_SIG_BASE_ADDR, parameters.signatureSegmentStartAddress);
Logger::debug("Setting UPDI_FUSE_BASE_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_FUSE_BASE_ADDR, parameters.fuseSegmentStartAddress);
Logger::debug("Setting UPDI_FUSE_SIZE AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_FUSE_SIZE, parameters.fuseSegmentSize);
Logger::debug("Setting UPDI_LOCK_BASE_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_LOCK_BASE_ADDR, parameters.lockbitSegmentStartAddress);
}
void EdbgAvr8Interface::activatePhysical(bool applyExternalReset) {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
ActivatePhysical(applyExternalReset)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
if (!applyExternalReset) {
// Try again with external reset applied
Logger::debug("Failed to activate physical interface on AVR8 target "
"- retrying with external reset applied.");
return this->activatePhysical(true);
}
throw Avr8CommandFailure("AVR8 Activate physical interface command failed", responseFrame);
}
this->physicalInterfaceActivated = true;
}
void EdbgAvr8Interface::deactivatePhysical() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
DeactivatePhysical()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Deactivate physical interface command failed", responseFrame);
}
this->physicalInterfaceActivated = false;
}
void EdbgAvr8Interface::attach() {
/*
* When attaching an ATmega target that is connected via JTAG, we must not set the breakAfterAttach flag, as
* this results in a timeout.
*
* However, in this case the attach command seems to _sometimes_ halt the target anyway, regardless of the
* value of the breakAfterAttach flag. So we still expect a stop event to be received shortly after issuing
* the attach command.
*/
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
Attach(
this->session.configVariant != Avr8ConfigVariant::MEGAJTAG
)
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Attach command failed", responseFrame);
}
this->targetAttached = true;
try {
// Wait for stopped event
this->waitForStoppedEvent();
} catch (const Exception& exception) {
Logger::warning(
"Execution on AVR8 target could not be halted post attach - " + exception.getMessage()
);
}
}
void EdbgAvr8Interface::detach() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
Detach()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Detach command failed", responseFrame);
}
this->targetAttached = false;
}
std::unique_ptr<AvrEvent> EdbgAvr8Interface::getAvrEvent() {
auto event = this->edbgInterface->requestAvrEvent();
if (!event.has_value()) {
return nullptr;
}
switch (event->eventId.value()) {
case AvrEventId::AVR8_BREAK_EVENT: {
// Break event
return std::make_unique<BreakEvent>(event.value());
}
default: {
/*
* TODO: This isn't very nice as we're performing an unnecessary copy. Maybe requestAvrEvents should
* return a unique_ptr instead?
*/
return std::make_unique<AvrEvent>(event.value());
}
}
}
void EdbgAvr8Interface::clearEvents() {
while (this->getAvrEvent() != nullptr) {}
}
bool EdbgAvr8Interface::alignmentRequired(Avr8MemoryType memoryType) {
return
memoryType == Avr8MemoryType::FLASH_PAGE
|| memoryType == Avr8MemoryType::SPM
|| memoryType == Avr8MemoryType::APPL_FLASH
|| memoryType == Avr8MemoryType::BOOT_FLASH
|| memoryType == Avr8MemoryType::EEPROM_ATOMIC
|| memoryType == Avr8MemoryType::EEPROM_PAGE
;
}
TargetMemoryAddress EdbgAvr8Interface::alignMemoryAddress(
Avr8MemoryType memoryType,
TargetMemoryAddress address
) {
std::uint16_t alignTo = 1;
switch (memoryType) {
case Avr8MemoryType::FLASH_PAGE:
case Avr8MemoryType::SPM:
case Avr8MemoryType::APPL_FLASH:
case Avr8MemoryType::BOOT_FLASH: {
/*
* Although the EDBG documentation claims any number of bytes can be accessed via the FLASH_PAGE mem
* type, when using the UPDI config variant, this isn't strictly true.
*
* When writing to flash on UPDI targets, we MUST page align the write operations. And we cannot word
* align them - we've tried only word aligning them - the debug tool reports a "Too many or too few
* bytes" error.
*/
alignTo = static_cast<std::uint16_t>(this->session.programMemorySegment.pageSize.value());
break;
}
case Avr8MemoryType::EEPROM_ATOMIC:
case Avr8MemoryType::EEPROM_PAGE: {
alignTo = static_cast<std::uint16_t>(this->session.eepromMemorySegment.pageSize.value());
break;
}
default: {
break;
}
}
if ((address % alignTo) != 0) {
return static_cast<TargetMemoryAddress>(std::floor(
static_cast<float>(address) / static_cast<float>(alignTo)
) * alignTo);
}
return address;
}
TargetMemorySize EdbgAvr8Interface::alignMemoryBytes(
Avr8MemoryType memoryType,
TargetMemorySize bytes
) {
std::uint16_t alignTo = 1;
switch (memoryType) {
case Avr8MemoryType::FLASH_PAGE:
case Avr8MemoryType::SPM:
case Avr8MemoryType::APPL_FLASH:
case Avr8MemoryType::BOOT_FLASH: {
// See comment in EdbgAvr8Interface::alignMemoryAddress()
alignTo = static_cast<std::uint16_t>(this->session.programMemorySegment.pageSize.value());
break;
}
case Avr8MemoryType::EEPROM_ATOMIC:
case Avr8MemoryType::EEPROM_PAGE: {
alignTo = static_cast<std::uint16_t>(this->session.eepromMemorySegment.pageSize.value());
break;
}
default: {
break;
}
}
if ((bytes % alignTo) != 0) {
return static_cast<TargetMemorySize>(std::ceil(
static_cast<float>(bytes) / static_cast<float>(alignTo)
) * alignTo);
}
return bytes;
}
std::optional<Targets::TargetMemorySize> EdbgAvr8Interface::maximumMemoryAccessSize(Avr8MemoryType memoryType) {
if (
memoryType == Avr8MemoryType::FLASH_PAGE
|| memoryType == Avr8MemoryType::APPL_FLASH
|| memoryType == Avr8MemoryType::BOOT_FLASH
|| (memoryType == Avr8MemoryType::SPM && this->session.configVariant == Avr8ConfigVariant::MEGAJTAG)
) {
// These flash memory types require single page access.
return this->session.programMemorySegment.pageSize.value();
}
if (
memoryType == Avr8MemoryType::EEPROM_ATOMIC
|| memoryType == Avr8MemoryType::EEPROM_PAGE
) {
// These EEPROM memory types requires single page access.
return this->session.eepromMemorySegment.pageSize.value();
}
if (this->maximumMemoryAccessSizePerRequest.has_value()) {
// There is a memory access size limit for this entire EdbgAvr8Interface instance
return this->maximumMemoryAccessSizePerRequest;
}
/*
* EDBG AVR8 debug tools behave in a really weird way when receiving or responding with more than two packets
* for a single memory access command. The data they read/write in this case appears to be wrong.
*
* To address this, we make sure we only issue memory access commands that will result in no more than two
* packets being sent to and from the debug tool.
*
* The -30 is to accommodate for the bytes in the command that are not part of the main payload of the command.
*/
return static_cast<Targets::TargetMemorySize>(
(this->edbgInterface->getUsbHidInputReportSize() - 30) * 2
);
}
TargetMemoryBuffer EdbgAvr8Interface::readMemory(
Avr8MemoryType type,
TargetMemoryAddress startAddress,
TargetMemorySize bytes,
const std::set<TargetMemoryAddress>& excludedAddresses
) {
if (type == Avr8MemoryType::FUSES) {
if (this->session.configVariant == Avr8ConfigVariant::DEBUG_WIRE) {
throw Exception("Cannot access AVR fuses via the debugWire interface");
}
}
const auto managingProgrammingMode = type == Avr8MemoryType::FUSES && !this->programmingModeEnabled;
if (managingProgrammingMode) {
this->enableProgrammingMode();
}
if (!excludedAddresses.empty() && (this->avoidMaskedMemoryRead || type != Avr8MemoryType::SRAM)) {
/*
* Driver-side masked memory read.
*
* Split the read into numerous reads, whenever we encounter an excluded address.
*
* All values for bytes located at excluded addresses will be returned as 0x00 - this mirrors the behaviour
* of the masked read memory EDBG command.
*/
auto output = TargetMemoryBuffer();
output.reserve(bytes);
auto segmentStartAddress = startAddress;
const auto endAddress = startAddress + bytes - 1;
for (const auto excludedAddress : excludedAddresses) {
if (excludedAddress < startAddress || excludedAddress > endAddress) {
// This excluded address is outside of the range from which we are reading, so it can be ignored.
continue;
}
const auto segmentSize = excludedAddress - segmentStartAddress;
if (segmentSize > 0) {
auto segmentBuffer = this->readMemory(
type,
segmentStartAddress,
segmentSize
);
std::move(segmentBuffer.begin(), segmentBuffer.end(), std::back_inserter(output));
}
output.emplace_back(0x00);
segmentStartAddress = excludedAddress + 1;
}
// Read final segment
const auto finalReadBytes = (endAddress - segmentStartAddress) + 1;
if (finalReadBytes > 0) {
auto segmentBuffer = this->readMemory(
type,
segmentStartAddress,
finalReadBytes
);
std::move(segmentBuffer.begin(), segmentBuffer.end(), std::back_inserter(output));
}
return output;
}
if (this->alignmentRequired(type)) {
const auto alignedStartAddress = this->alignMemoryAddress(type, startAddress);
const auto alignedBytes = this->alignMemoryBytes(type, bytes + (startAddress - alignedStartAddress));
if (alignedStartAddress != startAddress || alignedBytes != bytes) {
auto memoryBuffer = this->readMemory(type, alignedStartAddress, alignedBytes, excludedAddresses);
const auto offset = memoryBuffer.begin() + (startAddress - alignedStartAddress);
auto output = TargetMemoryBuffer();
output.reserve(bytes);
std::move(offset, offset + bytes, std::back_inserter(output));
return output;
}
}
const auto maximumReadSize = this->maximumMemoryAccessSize(type);
if (maximumReadSize.has_value() && bytes > *maximumReadSize) {
auto output = Targets::TargetMemoryBuffer();
output.reserve(bytes);
while (output.size() < bytes) {
const auto bytesToRead = std::min(
static_cast<TargetMemorySize>(bytes - output.size()),
*maximumReadSize
);
auto data = this->readMemory(
type,
static_cast<TargetMemoryAddress>(startAddress + output.size()),
bytesToRead,
excludedAddresses
);
std::move(data.begin(), data.end(), std::back_inserter(output));
}
return output;
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
ReadMemory(
type,
startAddress,
bytes,
excludedAddresses
)
);
if (managingProgrammingMode) {
this->disableProgrammingMode();
}
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Read memory command failed", responseFrame);
}
const auto data = responseFrame.getMemoryData();
if (data.size() != bytes) {
throw Avr8CommandFailure("Unexpected number of bytes returned from EDBG debug tool");
}
return data;
}
void EdbgAvr8Interface::writeMemory(
Avr8MemoryType type,
TargetMemoryAddress startAddress,
const TargetMemoryBuffer& buffer
) {
if (type == Avr8MemoryType::FUSES) {
if (this->session.configVariant == Avr8ConfigVariant::DEBUG_WIRE) {
throw Exception("Cannot access AVR fuses via the debugWire interface");
}
}
const auto managingProgrammingMode = type == Avr8MemoryType::FUSES && !this->programmingModeEnabled;
if (managingProgrammingMode) {
this->enableProgrammingMode();
}
const auto bytes = static_cast<TargetMemorySize>(buffer.size());
if (this->alignmentRequired(type)) {
const auto alignedStartAddress = this->alignMemoryAddress(type, startAddress);
const auto alignedBytes = this->alignMemoryBytes(type, bytes + (startAddress - alignedStartAddress));
if (alignedStartAddress != startAddress || alignedBytes != bytes) {
/*
* We can't just forward the memory type to readMemory(), because some memory types (such as
* EEPROM_ATOMIC) can only be used for writing.
*
* This nasty hack will have to do for now.
*/
const auto readMemoryType = type == Avr8MemoryType::EEPROM_ATOMIC ? Avr8MemoryType::EEPROM : type;
auto alignedBuffer = this->readMemory(readMemoryType, alignedStartAddress, alignedBytes);
assert(alignedBuffer.size() >= buffer.size());
const auto offset = alignedBuffer.begin() + (startAddress - alignedStartAddress);
std::copy(buffer.begin(), buffer.end(), offset);
return this->writeMemory(type, alignedStartAddress, alignedBuffer);
}
}
const auto maximumWriteSize = this->maximumMemoryAccessSize(type);
if (maximumWriteSize.has_value() && buffer.size() > *maximumWriteSize) {
auto bytesWritten = TargetMemorySize(0);
while (bytesWritten < buffer.size()) {
const auto chunkSize = std::min(
static_cast<TargetMemorySize>(buffer.size() - bytesWritten),
*maximumWriteSize
);
this->writeMemory(
type,
startAddress + bytesWritten,
TargetMemoryBuffer(
buffer.begin() + bytesWritten,
buffer.begin() + bytesWritten + chunkSize
)
);
bytesWritten += chunkSize;
}
return;
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
WriteMemory(
type,
startAddress,
buffer
)
);
// We must disable and re-enable programming mode, in order for the changes to the fuse bit to take effect.
if (type == Avr8MemoryType::FUSES) {
this->disableProgrammingMode();
if (!managingProgrammingMode) {
this->enableProgrammingMode();
}
}
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Write memory command failed", responseFrame);
}
}
void EdbgAvr8Interface::refreshTargetState() {
const auto avrEvent = this->getAvrEvent();
if (avrEvent != nullptr && avrEvent->eventId == AvrEventId::AVR8_BREAK_EVENT) {
auto* breakEvent = dynamic_cast<BreakEvent*>(avrEvent.get());
if (breakEvent == nullptr) {
throw Exception("Failed to process AVR8 break event");
}
this->targetState = TargetState::STOPPED;
return;
}
this->targetState = TargetState::RUNNING;
}
void EdbgAvr8Interface::disableDebugWire() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
DisableDebugWire()
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure("AVR8 Disable debugWire command failed", responseFrame);
}
}
void EdbgAvr8Interface::waitForStoppedEvent() {
auto breakEvent = this->waitForAvrEvent<BreakEvent>();
if (breakEvent == nullptr) {
throw Exception("Failed to receive break event for AVR8 target");
}
this->targetState = TargetState::STOPPED;
}
}