Files
BloomPatched/src/DebugToolDrivers/Microchip/Protocols/Edbg/Avr/EdbgAvr8Interface.cpp
2025-01-07 23:31:48 +00:00

1650 lines
70 KiB
C++

#include "EdbgAvr8Interface.hpp"
#include <thread>
#include <cassert>
#include <cmath>
#include <algorithm>
#include "src/Services/PathService.hpp"
#include "src/Services/StringService.hpp"
#include "src/Logger/Logger.hpp"
#include "Exceptions/Avr8CommandFailure.hpp"
#include "src/TargetController/Exceptions/DeviceInitializationFailure.hpp"
#include "src/Targets/Microchip/Avr8/Exceptions/DebugWirePhysicalInterfaceError.hpp"
// Command frames
#include "CommandFrames/Avr8Generic/SetParameter.hpp"
#include "CommandFrames/Avr8Generic/GetParameter.hpp"
#include "CommandFrames/Avr8Generic/ActivatePhysical.hpp"
#include "CommandFrames/Avr8Generic/DeactivatePhysical.hpp"
#include "CommandFrames/Avr8Generic/Attach.hpp"
#include "CommandFrames/Avr8Generic/Detach.hpp"
#include "CommandFrames/Avr8Generic/Stop.hpp"
#include "CommandFrames/Avr8Generic/Step.hpp"
#include "CommandFrames/Avr8Generic/Run.hpp"
#include "CommandFrames/Avr8Generic/RunTo.hpp"
#include "CommandFrames/Avr8Generic/GetDeviceId.hpp"
#include "CommandFrames/Avr8Generic/Reset.hpp"
#include "CommandFrames/Avr8Generic/ReadMemory.hpp"
#include "CommandFrames/Avr8Generic/WriteMemory.hpp"
#include "CommandFrames/Avr8Generic/GetProgramCounter.hpp"
#include "CommandFrames/Avr8Generic/SetProgramCounter.hpp"
#include "CommandFrames/Avr8Generic/DisableDebugWire.hpp"
#include "CommandFrames/Avr8Generic/SetSoftwareBreakpoints.hpp"
#include "CommandFrames/Avr8Generic/ClearAllSoftwareBreakpoints.hpp"
#include "CommandFrames/Avr8Generic/ClearSoftwareBreakpoints.hpp"
#include "CommandFrames/Avr8Generic/SetHardwareBreakpoint.hpp"
#include "CommandFrames/Avr8Generic/ClearHardwareBreakpoint.hpp"
#include "CommandFrames/Avr8Generic/EnterProgrammingMode.hpp"
#include "CommandFrames/Avr8Generic/LeaveProgrammingMode.hpp"
#include "CommandFrames/Avr8Generic/EraseMemory.hpp"
#include "Parameters/Avr8Generic/DebugWireJtagParameters.hpp"
#include "Parameters/Avr8Generic/PdiParameters.hpp"
#include "Parameters/Avr8Generic/UpdiParameters.hpp"
// AVR events
#include "Events/Avr8Generic/BreakEvent.hpp"
namespace DebugToolDrivers::Microchip::Protocols::Edbg::Avr
{
using namespace Targets::Microchip::Avr8;
using namespace Exceptions;
using CommandFrames::Avr8Generic::Stop;
using CommandFrames::Avr8Generic::Run;
using CommandFrames::Avr8Generic::RunTo;
using CommandFrames::Avr8Generic::Step;
using CommandFrames::Avr8Generic::Reset;
using CommandFrames::Avr8Generic::GetProgramCounter;
using CommandFrames::Avr8Generic::SetProgramCounter;
using CommandFrames::Avr8Generic::GetDeviceId;
using CommandFrames::Avr8Generic::SetSoftwareBreakpoints;
using CommandFrames::Avr8Generic::ClearSoftwareBreakpoints;
using CommandFrames::Avr8Generic::ClearAllSoftwareBreakpoints;
using CommandFrames::Avr8Generic::SetHardwareBreakpoint;
using CommandFrames::Avr8Generic::ClearHardwareBreakpoint;
using CommandFrames::Avr8Generic::ReadMemory;
using CommandFrames::Avr8Generic::EnterProgrammingMode;
using CommandFrames::Avr8Generic::LeaveProgrammingMode;
using CommandFrames::Avr8Generic::SetParameter;
using CommandFrames::Avr8Generic::GetParameter;
using CommandFrames::Avr8Generic::ActivatePhysical;
using CommandFrames::Avr8Generic::DeactivatePhysical;
using CommandFrames::Avr8Generic::Attach;
using CommandFrames::Avr8Generic::Detach;
using CommandFrames::Avr8Generic::ReadMemory;
using CommandFrames::Avr8Generic::WriteMemory;
using CommandFrames::Avr8Generic::EraseMemory;
using CommandFrames::Avr8Generic::DisableDebugWire;
using Targets::TargetAddressSpaceDescriptor;
using Targets::TargetMemorySegmentType;
using Targets::TargetExecutionState;
using Targets::TargetPhysicalInterface;
using Targets::TargetMemoryBuffer;
using Targets::TargetMemoryAddress;
using Targets::TargetMemorySize;
using Targets::TargetRegisterDescriptor;
using Targets::TargetRegisterDescriptors;
using Targets::TargetRegisterDescriptorAndValuePairs;
EdbgAvr8Interface::EdbgAvr8Interface(
EdbgInterface* edbgInterface,
const Targets::Microchip::Avr8::TargetDescriptionFile& targetDescriptionFile,
const Targets::Microchip::Avr8::Avr8TargetConfig& targetConfig
)
: edbgInterface(edbgInterface)
, session(EdbgAvr8Session{targetDescriptionFile, targetConfig})
{}
void EdbgAvr8Interface::init() {
if (this->session.configVariant == Avr8ConfigVariant::XMEGA) {
// Default PDI clock to 4MHz
// TODO: Make this adjustable via a target config parameter
this->setParameter(Avr8EdbgParameters::PDI_CLOCK_SPEED, std::uint16_t{4000});
}
if (this->session.configVariant == Avr8ConfigVariant::UPDI) {
// Default UPDI clock to 1.8MHz
this->setParameter(Avr8EdbgParameters::PDI_CLOCK_SPEED, std::uint16_t{1800});
this->setParameter(Avr8EdbgParameters::ENABLE_HIGH_VOLTAGE_UPDI, std::uint8_t{0});
}
if (this->session.configVariant == Avr8ConfigVariant::MEGAJTAG) {
// Default clock value for mega debugging is 200KHz
// TODO: Make this adjustable via a target config parameter
this->setParameter(Avr8EdbgParameters::MEGA_DEBUG_CLOCK, std::uint16_t{200});
this->setParameter(Avr8EdbgParameters::JTAG_DAISY_CHAIN_SETTINGS, std::uint32_t{0});
}
this->setParameter(
Avr8EdbgParameters::RUN_TIMERS_WHILST_STOPPED,
static_cast<std::uint8_t>(this->session.targetConfig.stopAllTimers ? 0 : 1)
);
this->setParameter(
Avr8EdbgParameters::CONFIG_VARIANT,
static_cast<std::uint8_t>(this->session.configVariant)
);
this->setParameter(
Avr8EdbgParameters::CONFIG_FUNCTION,
static_cast<std::uint8_t>(Avr8ConfigFunction::DEBUGGING)
);
static const auto avr8PhysicalInterfaceMapping = std::map<TargetPhysicalInterface, Avr8PhysicalInterface>{
{TargetPhysicalInterface::DEBUG_WIRE, Avr8PhysicalInterface::DEBUG_WIRE},
{TargetPhysicalInterface::PDI, Avr8PhysicalInterface::PDI},
{TargetPhysicalInterface::JTAG, Avr8PhysicalInterface::JTAG},
{TargetPhysicalInterface::UPDI, Avr8PhysicalInterface::PDI_1W},
};
this->setParameter(
Avr8EdbgParameters::PHYSICAL_INTERFACE,
static_cast<std::uint8_t>(avr8PhysicalInterfaceMapping.at(this->session.targetConfig.physicalInterface))
);
this->setTargetParameters();
}
void EdbgAvr8Interface::stop() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(Stop{});
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Stop target command failed", responseFrame};
}
if (this->cachedExecutionState != TargetExecutionState::STOPPED) {
this->waitForStoppedEvent();
}
}
void EdbgAvr8Interface::run() {
this->clearEvents();
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(Run{});
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Run command failed", responseFrame};
}
this->cachedExecutionState = TargetExecutionState::RUNNING;
}
void EdbgAvr8Interface::runTo(TargetMemoryAddress address) {
this->clearEvents();
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(RunTo{address});
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Run-to command failed", responseFrame};
}
this->cachedExecutionState = TargetExecutionState::RUNNING;
}
void EdbgAvr8Interface::step() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(Step{});
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Step target command failed", responseFrame};
}
this->cachedExecutionState = TargetExecutionState::STEPPING;
}
void EdbgAvr8Interface::reset() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(Reset{});
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Reset target command failed", responseFrame};
}
try {
// Wait for stopped event
this->waitForStoppedEvent();
} catch (const Exception& exception) {
throw Exception{"Failed to reset AVR8 target - missing stopped event."};
}
/*
* Issuing another command immediately after reset sometimes results in an 'illegal target state' error from
* the EDBG debug tool. Even though we waited for the break event.
*
* All we can really do here is introduce a small delay, to ensure that we're not issuing commands too quickly
* after reset.
*/
std::this_thread::sleep_for(std::chrono::milliseconds{250});
}
void EdbgAvr8Interface::activate() {
if (!this->physicalInterfaceActivated) {
try {
this->activatePhysical();
} catch (const Avr8CommandFailure& activationException) {
if (
this->session.targetConfig.physicalInterface == TargetPhysicalInterface::DEBUG_WIRE
&& (
activationException.code == Avr8CommandFailureCode::DEBUGWIRE_PHYSICAL_ERROR
|| activationException.code == Avr8CommandFailureCode::FAILED_TO_ENABLE_OCD
)
) {
throw DebugWirePhysicalInterfaceError{
"Failed to activate the debugWIRE physical interface - check target connection. "
"If the target was recently programmed via ISP, try cycling the target power. See "
+ Services::PathService::homeDomainName() + "/docs/debugging-avr-debugwire for more "
"information."
};
}
throw activationException;
}
}
if (!this->targetAttached) {
this->attach();
}
}
void EdbgAvr8Interface::deactivate() {
if (this->targetAttached) {
this->clearAllBreakpoints();
if (
this->session.targetConfig.physicalInterface == TargetPhysicalInterface::DEBUG_WIRE
&& this->session.targetConfig.disableDebugWireOnDeactivate
) {
try {
this->disableDebugWire();
Logger::warning(
"Successfully disabled debugWIRE on the AVR8 target - this is only temporary - "
"the debugWIRE module has lost control of the RESET pin. Bloom may no longer be able to "
"interface with the target until the next power cycle."
);
} catch (const Exception& exception) {
// Failing to disable debugWIRE should never prevent us from proceeding with target deactivation.
Logger::error(exception.getMessage());
}
}
this->detach();
}
if (this->physicalInterfaceActivated) {
this->deactivatePhysical();
}
}
void EdbgAvr8Interface::applyAccessRestrictions(
TargetRegisterDescriptor& registerDescriptor,
const TargetAddressSpaceDescriptor& addressSpaceDescriptor
) {
/*
* Currently, this implementation of the EDBG AVR8 debug interface can only access registers in the data and
* register file address space (during a debug session).
*
* There are some other memory types we can use to access some other registers during a debug session, but
* these are yet to be implemented.
*/
const auto accessible = addressSpaceDescriptor.key == this->session.dataAddressSpace.key
|| addressSpaceDescriptor.key == this->session.registerFileAddressSpace.key;
registerDescriptor.access.readable = accessible && registerDescriptor.access.readable;
registerDescriptor.access.writable = accessible && registerDescriptor.access.writable;
}
TargetMemoryAddress EdbgAvr8Interface::getProgramCounter() {
if (this->cachedExecutionState != TargetExecutionState::STOPPED) {
this->stop();
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(GetProgramCounter{});
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Get program counter command failed", responseFrame};
}
return responseFrame.extractProgramCounter();
}
void EdbgAvr8Interface::setProgramCounter(TargetMemoryAddress programCounter) {
if (this->cachedExecutionState != TargetExecutionState::STOPPED) {
/*
* TODO: Review - do we need to do this? Why? The TC shouldn't attempt to set the program counter if the
* target is running. Add a comment
*/
this->stop();
}
/*
* The program counter will be given in byte address form, but the EDBG tool will be expecting it in word
* address (16-bit) form. This is why we divide it by 2.
*/
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
SetProgramCounter{programCounter / 2}
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Set program counter command failed", responseFrame};
}
}
TargetSignature EdbgAvr8Interface::getDeviceId() {
if (this->session.configVariant == Avr8ConfigVariant::UPDI) {
/*
* In UPDI sessions, the 'Get ID' command behaves in an odd manner, where it doesn't actually return the
* target signature, but a fixed four byte string reading: 'A', 'V', 'R' and ' ' (white space).
*
* So it appears we cannot use that command for UPDI sessions. For this reason, we will just read the
* signature from memory via the signature memory segment.
*
* TODO: We're assuming the signature memory segment will always reside in the `data` address space, for
* UPDI targets. Review.
*/
const auto signatureMemory = this->readMemory(
Avr8MemoryType::SRAM,
this->session.signatureMemorySegment.startAddress,
3
);
if (signatureMemory.size() != 3) {
throw Exception{"Failed to read AVR8 signature from target - unexpected response size"};
}
return {signatureMemory[0], signatureMemory[1], signatureMemory[2]};
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(GetDeviceId{});
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Get device ID command failed", responseFrame};
}
return responseFrame.extractSignature(this->session.targetConfig.physicalInterface);
}
void EdbgAvr8Interface::setSoftwareBreakpoint(TargetMemoryAddress address) {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
SetSoftwareBreakpoints{{address}}
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Set software breakpoint command failed", responseFrame};
}
}
void EdbgAvr8Interface::clearSoftwareBreakpoint(TargetMemoryAddress address) {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
ClearSoftwareBreakpoints{{address}}
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Clear software breakpoint command failed", responseFrame};
}
}
void EdbgAvr8Interface::setHardwareBreakpoint(TargetMemoryAddress address) {
static const auto getAvailableBreakpointNumbers = [this] () {
auto breakpointNumbers = std::set<std::uint8_t>{1, 2, 3};
for (const auto& [address, allocatedNumber] : this->hardwareBreakpointNumbersByAddress) {
breakpointNumbers.erase(allocatedNumber);
}
return breakpointNumbers;
};
if (this->hardwareBreakpointNumbersByAddress.contains(address)) {
Logger::debug(
"Hardware breakpoint already installed for byte address 0x" + Services::StringService::toHex(address)
+ " - ignoring request"
);
return;
}
const auto availableBreakpointNumbers = getAvailableBreakpointNumbers();
if (availableBreakpointNumbers.empty()) {
throw Exception{"Maximum hardware breakpoints have been allocated"};
}
const auto breakpointNumber = *(availableBreakpointNumbers.begin());
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
SetHardwareBreakpoint{address, breakpointNumber}
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Set hardware breakpoint command failed", responseFrame};
}
this->hardwareBreakpointNumbersByAddress.emplace(address, breakpointNumber);
}
void EdbgAvr8Interface::clearHardwareBreakpoint(TargetMemoryAddress address) {
const auto breakpointNumberIt = this->hardwareBreakpointNumbersByAddress.find(address);
if (breakpointNumberIt == this->hardwareBreakpointNumbersByAddress.end()) {
Logger::error("No hardware breakpoint at byte address 0x" + Services::StringService::toHex(address));
return;
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
ClearHardwareBreakpoint{breakpointNumberIt->second}
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Clear hardware breakpoint command failed", responseFrame};
}
this->hardwareBreakpointNumbersByAddress.erase(address);
}
TargetRegisterDescriptorAndValuePairs EdbgAvr8Interface::readRegisters(
const Targets::TargetRegisterDescriptors& descriptors
) {
using Targets::TargetRegisterType;
using Targets::TargetMemoryAddressRange;
/*
* This function needs to be fast. Insight eagerly requests the values of all known registers that it can
* present to the user. It does this on numerous occasions (target stopped, user clicked refresh, etc.). This
* means we will be frequently loading over 100 register values in a single instance.
*
* For the above reason, we do not read each register value individually. That would take far too long if we
* have over 100 registers to read. Instead, we calculate the address ranges for each memory type we'll be
* reading from, and then perform a single read operation for each memory type.
*/
auto output = TargetRegisterDescriptorAndValuePairs{};
/*
* AVR registers can be accessed via one of two memory types, depending on the register type and config
* variant.
*
* For debugWIRE and JTAG config variants, all registers (in the data address space) can be accessed via the
* SRAM memory type. This includes general purpose registers.
*
* For PDI and UPDI config variants, all registers *EXCEPT* general purpose registers can be accessed via the
* SRAM memory type. General purpose registers can only be accessed via the REGISTER_FILE memory type.
*/
auto sramAddressRange = std::optional<TargetMemoryAddressRange>{};
auto registerFileAddressRange = std::optional<TargetMemoryAddressRange>{};
auto sramRegisterDescriptors = TargetRegisterDescriptors{};
auto registerFileRegisterDescriptors = TargetRegisterDescriptors{};
for (const auto& descriptor : descriptors) {
const auto regMemoryType = this->getRegisterMemoryType(*descriptor);
const auto endAddress = descriptor->startAddress + (descriptor->size - 1);
if (regMemoryType == Avr8MemoryType::REGISTER_FILE) {
// This register can only be accessed via the REGISTER_FILE memory type
if (registerFileAddressRange.has_value()) {
if (descriptor->startAddress < registerFileAddressRange->startAddress) {
registerFileAddressRange->startAddress = descriptor->startAddress;
}
if (endAddress > registerFileAddressRange->endAddress) {
registerFileAddressRange->endAddress = endAddress;
}
} else {
registerFileAddressRange = TargetMemoryAddressRange(
descriptor->startAddress,
descriptor->startAddress + (descriptor->size - 1)
);
}
registerFileRegisterDescriptors.push_back(descriptor);
}
if (regMemoryType == Avr8MemoryType::SRAM) {
// This register can be accessed via the SRAM memory type
if (sramAddressRange.has_value()) {
if (descriptor->startAddress < sramAddressRange->startAddress) {
sramAddressRange->startAddress = descriptor->startAddress;
}
if (endAddress > sramAddressRange->endAddress) {
sramAddressRange->endAddress = endAddress;
}
} else {
sramAddressRange = TargetMemoryAddressRange(
descriptor->startAddress,
descriptor->startAddress + (descriptor->size - 1)
);
}
sramRegisterDescriptors.push_back(descriptor);
}
}
if (sramAddressRange.has_value()) {
const auto readSize = (sramAddressRange->endAddress - sramAddressRange->startAddress) + 1;
/*
* When reading from SRAM, we must avoid any attempts to access the OCD data register (OCDDR), as the
* debug tool will reject the command and respond with a 0x36 error code (invalid address error).
*
* For this reason, we specify the OCDDR address as an excluded address. This will mean
* the EdbgAvr8Interface::readMemory() function will avoid reading from that particular address.
*/
auto excludedAddresses = std::set<TargetMemoryAddress>{};
if (this->session.ocdDataRegister.has_value()) {
excludedAddresses.insert(*(this->session.ocdDataRegister) + this->session.ioMemorySegment.startAddress);
}
const auto flatMemoryData = this->readMemory(
Avr8MemoryType::SRAM,
sramAddressRange->startAddress,
readSize,
excludedAddresses
);
if (flatMemoryData.size() != readSize) {
throw Exception{
"Failed to read memory via SRAM memory type - address range: "
+ std::to_string(sramAddressRange->startAddress) + " - "
+ std::to_string(sramAddressRange->endAddress) + ". Expected " + std::to_string(readSize)
+ " bytes, got " + std::to_string(flatMemoryData.size())
};
}
for (const auto& descriptor : sramRegisterDescriptors) {
/*
* Multibyte AVR8 registers are stored in LSB form.
*
* We use reverse iterators here to extract the data in MSB form.
*/
const auto bufferStartIt = flatMemoryData.rend()
- (descriptor->startAddress - sramAddressRange->startAddress) - descriptor->size;
output.emplace_back(
*descriptor,
TargetMemoryBuffer{bufferStartIt, bufferStartIt + descriptor->size}
);
}
}
if (registerFileAddressRange.has_value()) {
const auto readSize = (registerFileAddressRange->endAddress - registerFileAddressRange->startAddress) + 1;
const auto flatMemoryData = this->readMemory(
Avr8MemoryType::REGISTER_FILE,
registerFileAddressRange->startAddress,
readSize,
{}
);
if (flatMemoryData.size() != readSize) {
throw Exception{
"Failed to read memory via REGISTER_FILE memory type - address range: "
+ std::to_string(registerFileAddressRange->startAddress) + " - "
+ std::to_string(registerFileAddressRange->endAddress) + ". Expected "
+ std::to_string(readSize) + " bytes, got " + std::to_string(flatMemoryData.size())
};
}
for (const auto& descriptor : registerFileRegisterDescriptors) {
const auto bufferStartIt = flatMemoryData.rend()
- (descriptor->startAddress - registerFileAddressRange->startAddress) - descriptor->size;
output.emplace_back(
*descriptor,
TargetMemoryBuffer{bufferStartIt, bufferStartIt + descriptor->size}
);
}
}
return output;
}
void EdbgAvr8Interface::writeRegisters(
const TargetRegisterDescriptorAndValuePairs& registers
) {
using Targets::TargetRegisterType;
for (const auto& [descriptor, value] : registers) {
auto valueCopy = value;
if (valueCopy.empty()) {
throw Exception{"Cannot write empty register value"};
}
if (valueCopy.size() > descriptor.size) {
throw Exception{"Register value exceeds size specified by register descriptor."};
}
if (valueCopy.size() < descriptor.size) {
// Fill the missing most-significant bytes with 0x00
valueCopy.insert(valueCopy.begin(), descriptor.size - valueCopy.size(), 0x00);
}
if (valueCopy.size() > 1) {
// AVR8 registers are stored in LSB
std::reverse(valueCopy.begin(), valueCopy.end());
}
// TODO: This can be inefficient when updating many registers, maybe do something a little smarter here.
this->writeMemory(this->getRegisterMemoryType(descriptor), descriptor.startAddress, valueCopy);
}
}
TargetMemoryBuffer EdbgAvr8Interface::readMemory(
const Targets::TargetAddressSpaceDescriptor& addressSpaceDescriptor,
const Targets::TargetMemorySegmentDescriptor& memorySegmentDescriptor,
TargetMemoryAddress startAddress,
TargetMemorySize bytes,
const std::set<Targets::TargetMemoryAddressRange>& excludedAddressRanges
) {
if (this->programmingModeEnabled && memorySegmentDescriptor.type == TargetMemorySegmentType::RAM) {
throw Exception{"Cannot access RAM when programming mode is enabled"};
}
/*
* The internal readMemory() function accepts excluded addresses in the form of a set of addresses, as
* opposed to a set of address ranges.
*
* We will perform the conversion here.
*/
auto excludedAddresses = std::set<TargetMemoryAddress>{};
const auto endAddress = startAddress + bytes - 1;
for (const auto& addressRange : excludedAddressRanges) {
if (addressRange.startAddress > endAddress) {
// This address range is outside the range from which we will be reading
continue;
}
for (auto i = addressRange.startAddress; i <= addressRange.endAddress; ++i) {
excludedAddresses.insert(i);
}
}
if (memorySegmentDescriptor.type == TargetMemorySegmentType::FLASH) {
if (this->session.configVariant == Avr8ConfigVariant::MEGAJTAG) {
return this->readMemory(
this->programmingModeEnabled ? Avr8MemoryType::FLASH_PAGE : Avr8MemoryType::SPM,
startAddress,
bytes,
excludedAddresses
);
}
if (this->session.configVariant == Avr8ConfigVariant::XMEGA) {
const auto bootSectionStartAddress = this->session.programBootSection.value().get().startAddress;
if (startAddress >= bootSectionStartAddress) {
/*
* When using the BOOT_FLASH memory type, the address should be relative to the start of the
* boot section.
*/
return this->readMemory(
Avr8MemoryType::BOOT_FLASH,
startAddress - bootSectionStartAddress,
bytes,
excludedAddresses
);
}
/*
* When using the APPL_FLASH memory type, the address should be relative to the start of the
* application section.
*/
return this->readMemory(
Avr8MemoryType::APPL_FLASH,
startAddress - this->session.programAppSection.value().get().startAddress,
bytes,
excludedAddresses
);
}
return this->readMemory(Avr8MemoryType::FLASH_PAGE, startAddress, bytes, excludedAddresses);
}
if (memorySegmentDescriptor.type == TargetMemorySegmentType::EEPROM) {
if (this->session.configVariant == Avr8ConfigVariant::MEGAJTAG) {
return this->readMemory(
this->programmingModeEnabled ? Avr8MemoryType::EEPROM_PAGE : Avr8MemoryType::EEPROM,
startAddress,
bytes,
excludedAddresses
);
}
if (this->session.configVariant == Avr8ConfigVariant::XMEGA) {
// EEPROM addresses should be in relative form, for XMEGA (PDI) targets
return this->readMemory(
Avr8MemoryType::EEPROM,
startAddress - this->session.eepromMemorySegment.startAddress,
bytes,
excludedAddresses
);
}
return this->readMemory(Avr8MemoryType::EEPROM, startAddress, bytes, excludedAddresses);
}
if (
memorySegmentDescriptor.type == TargetMemorySegmentType::FUSES
&& this->programmingModeEnabled
&& this->session.configVariant != Avr8ConfigVariant::DEBUG_WIRE
) {
if (this->session.configVariant == Avr8ConfigVariant::XMEGA) {
return this->readMemory(
Avr8MemoryType::FUSES,
startAddress - this->session.fuseMemorySegment.startAddress,
bytes,
excludedAddresses
);
}
return this->readMemory(Avr8MemoryType::FUSES, startAddress, bytes, excludedAddresses);
}
return this->readMemory(Avr8MemoryType::SRAM, startAddress, bytes, excludedAddresses);
}
void EdbgAvr8Interface::writeMemory(
const Targets::TargetAddressSpaceDescriptor& addressSpaceDescriptor,
const Targets::TargetMemorySegmentDescriptor& memorySegmentDescriptor,
TargetMemoryAddress startAddress,
Targets::TargetMemoryBufferSpan buffer
) {
if (memorySegmentDescriptor.type == TargetMemorySegmentType::FLASH) {
if (this->session.configVariant == Avr8ConfigVariant::XMEGA) {
const auto bootSectionStartAddress = this->session.programBootSection.value().get().startAddress;
if (startAddress >= bootSectionStartAddress) {
/*
* When using the BOOT_FLASH memory type, the address should be relative to the start of the
* boot section.
*/
return this->writeMemory(
Avr8MemoryType::BOOT_FLASH,
startAddress - bootSectionStartAddress,
buffer
);
} else {
/*
* When using the APPL_FLASH memory type, the address should be relative to the start of the
* application section.
*/
return this->writeMemory(
Avr8MemoryType::APPL_FLASH,
startAddress - this->session.programAppSection.value().get().startAddress,
buffer
);
}
return this->writeMemory(Avr8MemoryType::FLASH_PAGE, startAddress, buffer);
}
return this->writeMemory(Avr8MemoryType::FLASH_PAGE, startAddress, buffer);
}
if (memorySegmentDescriptor.type == TargetMemorySegmentType::EEPROM) {
if (this->session.configVariant == Avr8ConfigVariant::MEGAJTAG) {
return this->writeMemory(
this->programmingModeEnabled ? Avr8MemoryType::EEPROM_PAGE : Avr8MemoryType::EEPROM,
startAddress,
buffer
);
}
if (this->session.configVariant == Avr8ConfigVariant::XMEGA) {
// EEPROM addresses should be in relative form, for XMEGA (PDI) targets
return this->writeMemory(
Avr8MemoryType::EEPROM_ATOMIC,
startAddress - this->session.eepromMemorySegment.startAddress,
buffer
);
}
if (this->session.configVariant == Avr8ConfigVariant::UPDI) {
return this->writeMemory(Avr8MemoryType::EEPROM_ATOMIC, startAddress, buffer);
}
return this->writeMemory(Avr8MemoryType::EEPROM, startAddress, buffer);
}
if (
memorySegmentDescriptor.type == TargetMemorySegmentType::FUSES
&& this->programmingModeEnabled
&& this->session.configVariant != Avr8ConfigVariant::DEBUG_WIRE
) {
if (this->session.configVariant == Avr8ConfigVariant::XMEGA) {
// Fuse addresses should be in relative form, for XMEGA (PDI) targets
return this->writeMemory(
Avr8MemoryType::FUSES,
startAddress - this->session.fuseMemorySegment.startAddress,
buffer
);
}
return this->writeMemory(Avr8MemoryType::FUSES, startAddress, buffer);
}
return this->writeMemory(Avr8MemoryType::SRAM, startAddress, buffer);
}
void EdbgAvr8Interface::eraseProgramMemory(std::optional<ProgramMemorySection> section) {
// The EDBG erase command with a specified "mode" parameter is only supported by XMEGA targets
if (this->session.configVariant != Avr8ConfigVariant::XMEGA) {
throw Exception{"debugWIRE, JTAG and UPDI targets do not support EDBG program memory erase command"};
}
if (!section.has_value() || *section == ProgramMemorySection::BOOT) {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
EraseMemory{Avr8EraseMemoryMode::BOOT_SECTION}
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 erase memory command (for BOOT section) failed", responseFrame};
}
}
if (!section.has_value() || *section == ProgramMemorySection::APPLICATION) {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
EraseMemory{Avr8EraseMemoryMode::APPLICATION_SECTION}
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 erase memory command (for APPLICATION section) failed", responseFrame};
}
}
}
void EdbgAvr8Interface::eraseChip() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
EraseMemory{Avr8EraseMemoryMode::CHIP}
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 erase memory command failed", responseFrame};
}
}
TargetExecutionState EdbgAvr8Interface::getExecutionState() {
/*
* We are not informed when a target goes from a stopped state to a running state, so there is no need
* to query the tool when we already know the target has stopped.
*
* This means we have to rely on the assumption that the target cannot enter a running state without
* our instruction.
*/
if (this->cachedExecutionState != TargetExecutionState::STOPPED) {
this->refreshTargetState();
}
return this->cachedExecutionState;
}
void EdbgAvr8Interface::enableProgrammingMode() {
if (this->programmingModeEnabled) {
return;
}
/*
* When clearing individual software breakpoints via EDBG tools, the breakpoints are not actually removed
* until this next program flow command.
*
* This wouldn't be a problem, if the tool handled the stale breakpoint removals properly, when programming
* the target (overwriting the program memory at which the software breakpoints reside). But the tool
* doesn't handle this properly - it seems to completely ignore the fact that the program memory has been
* updated, and so it will corrupt the new program by overwriting the program memory where the old
* software breakpoints used to reside. The memory is overwritten with the old instruction - the one that
* was captured at the time the software breakpoint was inserted. So we end up with a corrupted program.
*
* To avoid this issue, we send the 'clear all software breakpoints' command to the tool, just before
* entering programming mode. That command will clear all breakpoints immediately, preventing program
* memory corruption at the next flow control command.
*/
Logger::debug("Clearing all software breakpoints in preparation for programming mode");
this->clearAllSoftwareBreakpoints();
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
EnterProgrammingMode{}
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"Failed to enter programming mode on EDBG debug tool", responseFrame};
}
this->programmingModeEnabled = true;
this->hardwareBreakpointNumbersByAddress.clear();
}
void EdbgAvr8Interface::disableProgrammingMode() {
if (!this->programmingModeEnabled) {
return;
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
LeaveProgrammingMode{}
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"Failed to leave programming mode on EDBG debug tool", responseFrame};
}
this->programmingModeEnabled = false;
if (this->session.configVariant == Avr8ConfigVariant::MEGAJTAG && this->reactivateJtagTargetPostProgrammingMode) {
this->deactivatePhysical();
this->targetAttached = false;
this->activate();
}
}
void EdbgAvr8Interface::setTargetParameters() {
switch (this->session.configVariant) {
case Avr8ConfigVariant::DEBUG_WIRE:
case Avr8ConfigVariant::MEGAJTAG: {
this->setDebugWireAndJtagParameters();
break;
}
case Avr8ConfigVariant::XMEGA: {
this->setPdiParameters();
break;
}
case Avr8ConfigVariant::UPDI: {
this->setUpdiParameters();
break;
}
default: {
break;
}
}
}
void EdbgAvr8Interface::setParameter(const Avr8EdbgParameter& parameter, const std::vector<unsigned char>& value) {
using Services::StringService;
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
SetParameter{parameter, value}
);
Logger::debug(
"Setting AVR8 EDBG parameter (context: 0x" + StringService::toHex(parameter.context) + ", id: 0x"
+ StringService::toHex(parameter.id) + ", value: 0x" + StringService::toHex(value) + ")"
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"Failed to set parameter on device!", responseFrame};
}
}
std::vector<unsigned char> EdbgAvr8Interface::getParameter(const Avr8EdbgParameter& parameter, std::uint8_t size) {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
GetParameter{parameter, size}
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"Failed to get parameter from device!", responseFrame};
}
return responseFrame.getPayloadData();
}
void EdbgAvr8Interface::setDebugWireAndJtagParameters() {
const auto parameters = Parameters::Avr8Generic::DebugWireJtagParameters{this->session.targetDescriptionFile};
Logger::debug("Setting FLASH_PAGE_SIZE AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_FLASH_PAGE_SIZE, parameters.flashPageSize);
Logger::debug("Setting FLASH_SIZE AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_FLASH_SIZE, parameters.flashSize);
Logger::debug("Setting FLASH_BASE AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_FLASH_BASE, parameters.flashStartWordAddress);
if (parameters.bootSectionStartWordAddress.has_value()) {
Logger::debug("Setting BOOT_START_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_BOOT_START_ADDR, *(parameters.bootSectionStartWordAddress));
}
Logger::debug("Setting SRAM_START AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_SRAM_START, parameters.ramStartAddress);
Logger::debug("Setting EEPROM_SIZE AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_EEPROM_SIZE, parameters.eepromSize);
Logger::debug("Setting EEPROM_PAGE_SIZE AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_EEPROM_PAGE_SIZE, parameters.eepromPageSize);
Logger::debug("Setting OCD_REVISION AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_OCD_REVISION, parameters.ocdRevision);
Logger::debug("Setting OCD_DATA_REGISTER AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_OCD_DATA_REGISTER, parameters.ocdDataRegisterAddress);
Logger::debug("Setting EEARL_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_EEARL_ADDR, parameters.eearAddressLow);
Logger::debug("Setting EEARH_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_EEARH_ADDR, parameters.eearAddressHigh);
Logger::debug("Setting EECR_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_EECR_ADDR, parameters.eecrAddress);
Logger::debug("Setting EEDR_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_EEDR_ADDR, parameters.eedrAddress);
Logger::debug("Setting SPMCR_REGISTER AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_SPMCR_REGISTER, parameters.spmcrAddress);
Logger::debug("Setting OSCCAL_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_OSCCAL_ADDR, parameters.osccalAddress);
}
void EdbgAvr8Interface::setPdiParameters() {
const auto parameters = Parameters::Avr8Generic::PdiParameters{this->session.targetDescriptionFile};
Logger::debug("Setting APPL_BASE_ADDR AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_APPL_BASE_ADDR, parameters.appSectionPdiOffset);
Logger::debug("Setting BOOT_BASE_ADDR AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_BOOT_BASE_ADDR, parameters.bootSectionPdiOffset);
Logger::debug("Setting EEPROM_BASE_ADDR AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_EEPROM_BASE_ADDR, parameters.eepromPdiOffset);
Logger::debug("Setting FUSE_BASE_ADDR AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_FUSE_BASE_ADDR, parameters.fuseRegistersPdiOffset);
Logger::debug("Setting LOCKBIT_BASE_ADDR AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_LOCKBIT_BASE_ADDR, parameters.lockRegistersPdiOffset);
Logger::debug("Setting USER_SIGN_BASE_ADDR AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_USER_SIGN_BASE_ADDR, parameters.userSignaturesPdiOffset);
Logger::debug("Setting PROD_SIGN_BASE_ADDR AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_PROD_SIGN_BASE_ADDR, parameters.prodSignaturesPdiOffset);
Logger::debug("Setting DATA_BASE_ADDR AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_DATA_BASE_ADDR, parameters.ramPdiOffset);
Logger::debug("Setting APPLICATION_BYTES AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_APPLICATION_BYTES, parameters.appSectionSize);
Logger::debug("Setting BOOT_BYTES AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_BOOT_BYTES, parameters.bootSectionSize);
Logger::debug("Setting FLASH_PAGE_BYTES AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_FLASH_PAGE_BYTES, parameters.flashPageSize);
Logger::debug("Setting EEPROM_SIZE AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_EEPROM_SIZE, parameters.eepromSize);
Logger::debug("Setting EEPROM_PAGE_SIZE AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_EEPROM_PAGE_SIZE, parameters.eepromPageSize);
Logger::debug("Setting NVM_BASE AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_NVM_BASE, parameters.nvmModuleBaseAddress);
Logger::debug("Setting SIGNATURE_OFFSET AVR8 parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_SIGNATURE_OFFSET, parameters.signaturesPdiOffset);
}
void EdbgAvr8Interface::setUpdiParameters() {
const auto parameters = Parameters::Avr8Generic::UpdiParameters{this->session.targetDescriptionFile};
/*
* The program memory base address field for UPDI sessions (DEVICE_UPDI_PROGMEM_BASE_ADDR) seems to be
* limited to two bytes in size, as opposed to the four byte size for the debugWIRE, JTAG and PDI
* equivalent fields. This is why, I suspect, another field was required for the most significant byte of
* the program memory base address (DEVICE_UPDI_PROGMEM_BASE_ADDR_MSB).
*
* The additional DEVICE_UPDI_PROGMEM_BASE_ADDR_MSB field is only one byte in size, so it brings the total
* capacity for the program memory base address to 24 bits.
*/
Logger::debug("Setting UPDI_PROGMEM_BASE_ADDR AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_PROGMEM_BASE_ADDR,
static_cast<std::uint16_t>(parameters.programMemoryStartAddress)
);
Logger::debug("Setting UPDI_PROGMEM_BASE_ADDR_MSB AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_PROGMEM_BASE_ADDR_MSB,
static_cast<std::uint8_t>(parameters.programMemoryStartAddress >> 16)
);
Logger::debug("Setting UPDI_24_BIT_ADDRESSING_ENABLE AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_24_BIT_ADDRESSING_ENABLE,
parameters.programMemoryStartAddress > 0xFFFF
? std::uint8_t{1}
: std::uint8_t{0}
);
/*
* See the comment above regarding capacity limitations of the DEVICE_UPDI_PROGMEM_BASE_ADDR field.
*
* The same applies here, for the flash page size field (DEVICE_UPDI_FLASH_PAGE_SIZE).
*/
Logger::debug("Setting UPDI_FLASH_PAGE_SIZE AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_FLASH_PAGE_SIZE,
static_cast<std::uint8_t>(parameters.flashPageSize)
);
Logger::debug("Setting UPDI_FLASH_PAGE_SIZE_MSB AVR8 device parameter");
this->setParameter(
Avr8EdbgParameters::DEVICE_UPDI_FLASH_PAGE_SIZE_MSB,
static_cast<std::uint8_t>(parameters.flashPageSize >> 8)
);
Logger::debug("Setting UPDI_EEPROM_PAGE_SIZE AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_EEPROM_PAGE_SIZE, parameters.eepromPageSize);
Logger::debug("Setting UPDI_NVMCTRL_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_NVMCTRL_ADDR, parameters.nvmModuleBaseAddress);
Logger::debug("Setting UPDI_OCD_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_OCD_ADDR, parameters.ocdModuleAddress);
Logger::debug("Setting UPDI_FLASH_SIZE AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_FLASH_SIZE, parameters.flashSize);
Logger::debug("Setting UPDI_EEPROM_SIZE AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_EEPROM_SIZE, parameters.eepromSize);
Logger::debug("Setting UPDI_EEPROM_BASE_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_EEPROM_BASE_ADDR, parameters.eepromStartAddress);
Logger::debug("Setting UPDI_SIG_BASE_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_SIG_BASE_ADDR, parameters.signatureSegmentStartAddress);
Logger::debug("Setting UPDI_FUSE_BASE_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_FUSE_BASE_ADDR, parameters.fuseSegmentStartAddress);
Logger::debug("Setting UPDI_FUSE_SIZE AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_FUSE_SIZE, parameters.fuseSegmentSize);
Logger::debug("Setting UPDI_LOCK_BASE_ADDR AVR8 device parameter");
this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_LOCK_BASE_ADDR, parameters.lockbitSegmentStartAddress);
}
void EdbgAvr8Interface::activatePhysical(bool applyExternalReset) {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
ActivatePhysical{applyExternalReset}
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
if (!applyExternalReset) {
// Try again with external reset applied
Logger::debug(
"Failed to activate physical interface on AVR8 target - retrying with external reset applied."
);
return this->activatePhysical(true);
}
throw Avr8CommandFailure{"AVR8 Activate physical interface command failed", responseFrame};
}
this->physicalInterfaceActivated = true;
}
void EdbgAvr8Interface::deactivatePhysical() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
DeactivatePhysical{}
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Deactivate physical interface command failed", responseFrame};
}
this->physicalInterfaceActivated = false;
}
void EdbgAvr8Interface::attach() {
/*
* When attaching an ATmega JTAG target, we must not set the breakAfterAttach flag, as this results in a
* timeout.
*
* However, in this case the 'attach' command seems to _sometimes_ halt the target anyway, regardless of the
* value of the breakAfterAttach flag. So we still expect a stop event to be received shortly after issuing
* the 'attach' command.
*/
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
Attach{this->session.configVariant != Avr8ConfigVariant::MEGAJTAG}
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Attach command failed", responseFrame};
}
this->targetAttached = true;
try {
// Wait for stopped event
this->waitForStoppedEvent();
} catch (const Exception& exception) {
Logger::warning("Execution on AVR8 target could not be halted post attach - " + exception.getMessage());
}
}
void EdbgAvr8Interface::detach() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(Detach{});
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Detach command failed", responseFrame};
}
this->targetAttached = false;
}
void EdbgAvr8Interface::clearAllSoftwareBreakpoints() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
ClearAllSoftwareBreakpoints{}
);
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Clear all software breakpoints command failed", responseFrame};
}
}
void EdbgAvr8Interface::clearAllBreakpoints() {
this->clearAllSoftwareBreakpoints();
// Clear all hardware breakpoints
while (!this->hardwareBreakpointNumbersByAddress.empty()) {
this->clearHardwareBreakpoint(this->hardwareBreakpointNumbersByAddress.begin()->first);
}
}
std::unique_ptr<AvrEvent> EdbgAvr8Interface::getAvrEvent() {
auto event = this->edbgInterface->requestAvrEvent();
if (!event.has_value()) {
return nullptr;
}
switch (event->eventId.value()) {
case AvrEventId::AVR8_BREAK_EVENT: {
// Break event
return std::make_unique<BreakEvent>(event.value());
}
default: {
/*
* TODO: This isn't very nice as we're performing an unnecessary copy. Maybe requestAvrEvent should
* return a unique_ptr instead?
*/
return std::make_unique<AvrEvent>(event.value());
}
}
}
void EdbgAvr8Interface::clearEvents() {
while (this->getAvrEvent() != nullptr) {}
}
Avr8MemoryType EdbgAvr8Interface::getRegisterMemoryType(const TargetRegisterDescriptor& descriptor) {
return (
descriptor.type == Targets::TargetRegisterType::GENERAL_PURPOSE_REGISTER
&& (
this->session.configVariant == Avr8ConfigVariant::XMEGA
|| this->session.configVariant == Avr8ConfigVariant::UPDI
)
) ? Avr8MemoryType::REGISTER_FILE : Avr8MemoryType::SRAM;
}
bool EdbgAvr8Interface::alignmentRequired(Avr8MemoryType memoryType) {
return
memoryType == Avr8MemoryType::FLASH_PAGE
|| memoryType == Avr8MemoryType::SPM
|| memoryType == Avr8MemoryType::APPL_FLASH
|| memoryType == Avr8MemoryType::BOOT_FLASH
|| memoryType == Avr8MemoryType::EEPROM_ATOMIC
|| memoryType == Avr8MemoryType::EEPROM_PAGE
;
}
TargetMemoryAddress EdbgAvr8Interface::alignMemoryAddress(Avr8MemoryType memoryType, TargetMemoryAddress address) {
auto alignTo = std::uint16_t{1};
switch (memoryType) {
case Avr8MemoryType::FLASH_PAGE:
case Avr8MemoryType::SPM:
case Avr8MemoryType::APPL_FLASH:
case Avr8MemoryType::BOOT_FLASH: {
/*
* Although the EDBG documentation claims any number of bytes can be accessed via the FLASH_PAGE mem
* type, when using the UPDI config variant, this isn't strictly true.
*
* When writing to flash on UPDI targets, we MUST page align the write operations. And we cannot word
* align them - we've tried only word aligning them - the debug tool reports a "Too many or too few
* bytes" error.
*/
alignTo = static_cast<std::uint16_t>(this->session.programMemorySegment.pageSize.value());
break;
}
case Avr8MemoryType::EEPROM_ATOMIC:
case Avr8MemoryType::EEPROM_PAGE: {
alignTo = static_cast<std::uint16_t>(this->session.eepromMemorySegment.pageSize.value());
break;
}
default: {
break;
}
}
if ((address % alignTo) != 0) {
return (address / alignTo) * alignTo;
}
return address;
}
TargetMemorySize EdbgAvr8Interface::alignMemoryBytes(Avr8MemoryType memoryType, TargetMemorySize bytes) {
auto alignTo = std::uint16_t{1};
switch (memoryType) {
case Avr8MemoryType::FLASH_PAGE:
case Avr8MemoryType::SPM:
case Avr8MemoryType::APPL_FLASH:
case Avr8MemoryType::BOOT_FLASH: {
// See comment in EdbgAvr8Interface::alignMemoryAddress()
alignTo = static_cast<std::uint16_t>(this->session.programMemorySegment.pageSize.value());
break;
}
case Avr8MemoryType::EEPROM_ATOMIC:
case Avr8MemoryType::EEPROM_PAGE: {
alignTo = static_cast<std::uint16_t>(this->session.eepromMemorySegment.pageSize.value());
break;
}
default: {
break;
}
}
if ((bytes % alignTo) != 0) {
return static_cast<TargetMemorySize>(std::ceil(
static_cast<double>(bytes) / static_cast<double>(alignTo)
) * alignTo);
}
return bytes;
}
TargetMemorySize EdbgAvr8Interface::maximumMemoryAccessSize(Avr8MemoryType memoryType) {
if (
memoryType == Avr8MemoryType::FLASH_PAGE
|| memoryType == Avr8MemoryType::APPL_FLASH
|| memoryType == Avr8MemoryType::BOOT_FLASH
|| (memoryType == Avr8MemoryType::SPM && this->session.configVariant == Avr8ConfigVariant::MEGAJTAG)
) {
// These flash memory types require single page access.
return this->session.programMemorySegment.pageSize.value();
}
if (memoryType == Avr8MemoryType::EEPROM_ATOMIC || memoryType == Avr8MemoryType::EEPROM_PAGE) {
// These EEPROM memory types requires single page access.
return this->session.eepromMemorySegment.pageSize.value();
}
if (this->maximumMemoryAccessSizePerRequest.has_value()) {
// There is a memory access size limit for this entire EdbgAvr8Interface instance
return *(this->maximumMemoryAccessSizePerRequest);
}
/*
* EDBG AVR8 debug tools behave in a really weird way when receiving or responding with more than two packets
* for a single memory access command. The data they read/write in this case appears to be wrong.
*
* To address this, we make sure we only issue memory access commands that will result in no more than two
* packets being sent to and from the debug tool.
*
* The -30 is to accommodate for the bytes in the command that are not part of the main payload of the command.
*/
return static_cast<Targets::TargetMemorySize>((this->edbgInterface->getUsbHidInputReportSize() - 30) * 2);
}
TargetMemoryBuffer EdbgAvr8Interface::readMemory(
Avr8MemoryType type,
TargetMemoryAddress startAddress,
TargetMemorySize bytes,
const std::set<TargetMemoryAddress>& excludedAddresses
) {
if (type == Avr8MemoryType::FUSES && this->session.configVariant == Avr8ConfigVariant::DEBUG_WIRE) {
throw Exception{"Cannot access AVR fuses via the debugWIRE interface"};
}
const auto managingProgrammingMode = type == Avr8MemoryType::FUSES && !this->programmingModeEnabled;
if (managingProgrammingMode) {
this->enableProgrammingMode();
}
if (!excludedAddresses.empty() && (this->avoidMaskedMemoryRead || type != Avr8MemoryType::SRAM)) {
/*
* Driver-side masked memory read.
*
* Split the read into numerous reads, whenever we encounter an excluded address.
*
* All values for bytes located at excluded addresses will be returned as 0x00 - this mirrors the behaviour
* of the masked read memory EDBG command.
*/
auto output = TargetMemoryBuffer{};
output.reserve(bytes);
auto segmentStartAddress = startAddress;
const auto endAddress = startAddress + bytes - 1;
for (const auto excludedAddress : excludedAddresses) {
if (excludedAddress < startAddress || excludedAddress > endAddress) {
// This excluded address is outside the range from which we are reading, so it can be ignored.
continue;
}
const auto segmentSize = excludedAddress - segmentStartAddress;
if (segmentSize > 0) {
auto segmentBuffer = this->readMemory(type, segmentStartAddress, segmentSize);
std::move(segmentBuffer.begin(), segmentBuffer.end(), std::back_inserter(output));
}
output.emplace_back(0x00);
segmentStartAddress = excludedAddress + 1;
}
// Read final segment
const auto finalReadBytes = (endAddress - segmentStartAddress) + 1;
if (finalReadBytes > 0) {
auto segmentBuffer = this->readMemory(type, segmentStartAddress, finalReadBytes);
std::move(segmentBuffer.begin(), segmentBuffer.end(), std::back_inserter(output));
}
if (managingProgrammingMode) {
this->disableProgrammingMode();
}
return output;
}
if (this->alignmentRequired(type)) {
const auto alignedStartAddress = this->alignMemoryAddress(type, startAddress);
const auto alignedBytes = this->alignMemoryBytes(type, bytes + (startAddress - alignedStartAddress));
if (alignedStartAddress != startAddress || alignedBytes != bytes) {
auto memoryBuffer = this->readMemory(type, alignedStartAddress, alignedBytes, excludedAddresses);
const auto offset = memoryBuffer.begin() + (startAddress - alignedStartAddress);
auto output = TargetMemoryBuffer{};
output.reserve(bytes);
std::move(offset, offset + bytes, std::back_inserter(output));
return output;
}
}
const auto maximumReadSize = this->maximumMemoryAccessSize(type);
if (bytes > maximumReadSize) {
auto output = TargetMemoryBuffer{};
output.reserve(bytes);
while (output.size() < bytes) {
const auto bytesToRead = std::min(
static_cast<TargetMemorySize>(bytes - output.size()),
maximumReadSize
);
auto data = this->readMemory(
type,
static_cast<TargetMemoryAddress>(startAddress + output.size()),
bytesToRead,
excludedAddresses
);
std::move(data.begin(), data.end(), std::back_inserter(output));
}
return output;
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
ReadMemory{type, startAddress, bytes, excludedAddresses}
);
if (managingProgrammingMode) {
this->disableProgrammingMode();
}
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Read memory command failed", responseFrame};
}
auto data = responseFrame.getMemoryData();
if (data.size() != bytes) {
throw Avr8CommandFailure{"Unexpected number of bytes returned from EDBG debug tool"};
}
return data;
}
void EdbgAvr8Interface::writeMemory(
Avr8MemoryType type,
TargetMemoryAddress startAddress,
Targets::TargetMemoryBufferSpan buffer
) {
if (type == Avr8MemoryType::FUSES && this->session.configVariant == Avr8ConfigVariant::DEBUG_WIRE) {
throw Exception{"Cannot access AVR fuses via the debugWIRE interface"};
}
const auto managingProgrammingMode = type == Avr8MemoryType::FUSES && !this->programmingModeEnabled;
if (managingProgrammingMode) {
this->enableProgrammingMode();
}
const auto bytes = static_cast<TargetMemorySize>(buffer.size());
if (this->alignmentRequired(type)) {
const auto alignedStartAddress = this->alignMemoryAddress(type, startAddress);
const auto alignedBytes = this->alignMemoryBytes(type, bytes + (startAddress - alignedStartAddress));
if (alignedStartAddress != startAddress || alignedBytes != bytes) {
/*
* We can't just forward the memory type to readMemory(), because some memory types (such as
* EEPROM_ATOMIC) can only be used for writing.
*/
const auto readMemType = type == Avr8MemoryType::EEPROM_ATOMIC ? Avr8MemoryType::EEPROM : type;
auto alignedBuffer = (alignedStartAddress < startAddress)
? this->readMemory(readMemType, alignedStartAddress, startAddress - alignedStartAddress)
: TargetMemoryBuffer{};
alignedBuffer.resize(alignedBytes);
std::copy(
buffer.begin(),
buffer.end(),
alignedBuffer.begin() + (startAddress - alignedStartAddress)
);
const auto dataBack = this->readMemory(
readMemType,
startAddress + bytes,
alignedBytes - bytes - (startAddress - alignedStartAddress),
{}
);
std::copy(
dataBack.begin(),
dataBack.end(),
alignedBuffer.begin() + (startAddress - alignedStartAddress) + bytes
);
return this->writeMemory(type, alignedStartAddress, alignedBuffer);
}
}
const auto maximumWriteSize = this->maximumMemoryAccessSize(type);
if (buffer.size() > maximumWriteSize) {
auto bytesWritten = TargetMemorySize{0};
while (bytesWritten < buffer.size()) {
const auto chunkSize = std::min(
static_cast<TargetMemorySize>(buffer.size() - bytesWritten),
maximumWriteSize
);
this->writeMemory(
type,
startAddress + bytesWritten,
buffer.subspan(bytesWritten, chunkSize)
);
bytesWritten += chunkSize;
}
return;
}
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(
WriteMemory{type, startAddress, buffer}
);
// We must disable and re-enable programming mode, in order for the changes to the fuse bit to take effect.
if (type == Avr8MemoryType::FUSES) {
this->disableProgrammingMode();
if (!managingProgrammingMode) {
this->enableProgrammingMode();
}
}
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Write memory command failed", responseFrame};
}
}
void EdbgAvr8Interface::refreshTargetState() {
const auto avrEvent = this->getAvrEvent();
if (avrEvent != nullptr && avrEvent->eventId == AvrEventId::AVR8_BREAK_EVENT) {
auto* breakEvent = dynamic_cast<BreakEvent*>(avrEvent.get());
if (breakEvent == nullptr) {
throw Exception{"Failed to process AVR8 break event"};
}
this->cachedExecutionState = TargetExecutionState::STOPPED;
return;
}
if (this->cachedExecutionState != TargetExecutionState::STEPPING) {
this->cachedExecutionState = TargetExecutionState::RUNNING;
}
}
void EdbgAvr8Interface::disableDebugWire() {
const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(DisableDebugWire{});
if (responseFrame.id == Avr8ResponseId::FAILED) {
throw Avr8CommandFailure{"AVR8 Disable debugWIRE command failed", responseFrame};
}
}
void EdbgAvr8Interface::waitForStoppedEvent() {
auto breakEvent = this->waitForAvrEvent<BreakEvent>();
if (breakEvent == nullptr) {
throw Exception{"Failed to receive break event for AVR8 target"};
}
this->cachedExecutionState = TargetExecutionState::STOPPED;
}
}