Files
BloomPatched/src/DebugToolDrivers/Protocols/RiscVDebugSpec/DebugTranslator.cpp
Nav 2580cecb26 Handle mapped program memory segment aliasing properly, on WCH RISC-V targets
- Added `program_segment_key` target config param, to allow the user to specify the desired program memory segment
- Added the ability to resolve the currently aliased segment, by means of probing the mapped segment
- Added program counter transformation, when the mapped segment is aliasing a foreign segment
- Other bites of tidying
2024-12-14 02:09:25 +00:00

1358 lines
55 KiB
C++

#include "DebugTranslator.hpp"
#include <string>
#include <thread>
#include <chrono>
#include <limits>
#include <cassert>
#include <algorithm>
#include <thread>
#include "Registers/CpuRegisterNumbers.hpp"
#include "DebugModule/Registers/RegisterAddresses.hpp"
#include "DebugModule/Registers/RegisterAccessControlField.hpp"
#include "DebugModule/Registers/MemoryAccessControlField.hpp"
#include "DebugModule/Registers/AbstractCommandAutoExecuteRegister.hpp"
#include "src/Targets/RiscV/Opcodes/Lb.hpp"
#include "src/Targets/RiscV/Opcodes/Lw.hpp"
#include "src/Targets/RiscV/Opcodes/Sb.hpp"
#include "src/Targets/RiscV/Opcodes/Sw.hpp"
#include "src/Targets/RiscV/Opcodes/Addi.hpp"
#include "TriggerModule/Registers/TriggerSelect.hpp"
#include "TriggerModule/Registers/TriggerInfo.hpp"
#include "TriggerModule/Registers/TriggerData1.hpp"
#include "TriggerModule/Registers/MatchControl.hpp"
#include "src/Helpers/Array.hpp"
#include "src/Exceptions/Exception.hpp"
#include "src/Exceptions/InvalidConfig.hpp"
#include "src/Exceptions/InternalFatalErrorException.hpp"
#include "src/TargetController/Exceptions/TargetFailure.hpp"
#include "src/TargetController/Exceptions/TargetOperationFailure.hpp"
#include "src/Targets/RiscV/Exceptions/IllegalMemoryAccess.hpp"
#include "src/Logger/Logger.hpp"
namespace DebugToolDrivers::Protocols::RiscVDebugSpec
{
using Registers::DebugControlStatusRegister;
using DebugModule::Registers::RegisterAddress;
using DebugModule::Registers::ControlRegister;
using DebugModule::Registers::StatusRegister;
using DebugModule::Registers::AbstractControlStatusRegister;
using DebugModule::Registers::AbstractCommandRegister;
using DebugModule::Registers::AbstractCommandAutoExecuteRegister;
using DebugModule::Registers::RegisterAccessControlField;
using DebugModule::Registers::MemoryAccessControlField;
using DebugModule::AbstractCommandError;
using DebugModule::MemoryAccessStrategy;
using Registers::CpuRegisterNumber;
using namespace ::Targets::RiscV;
using ::Targets::TargetExecutionState;
using ::Targets::TargetMemoryAddress;
using ::Targets::TargetMemoryAddressRange;
using ::Targets::TargetMemorySize;
using ::Targets::TargetMemoryBuffer;
using ::Targets::TargetMemoryBufferSpan;
using ::Targets::TargetStackPointer;
using ::Targets::TargetAddressSpaceDescriptor;
using ::Targets::TargetMemorySegmentDescriptor;
using ::Targets::TargetRegisterDescriptors;
using ::Targets::TargetRegisterDescriptorAndValuePairs;
DebugTranslator::DebugTranslator(
DebugTransportModuleInterface& dtmInterface,
const DebugTranslatorConfig& config,
const TargetDescriptionFile& targetDescriptionFile,
const RiscVTargetConfig& targetConfig
)
: dtmInterface(dtmInterface)
, config(config)
, targetDescriptionFile(targetDescriptionFile)
, targetConfig(targetConfig)
{}
void DebugTranslator::activate() {
this->debugModuleDescriptor.hartIndices = this->discoverHartIndices();
if (this->debugModuleDescriptor.hartIndices.empty()) {
throw Exceptions::TargetFailure{"Failed to discover any RISC-V harts"};
}
if (this->debugModuleDescriptor.hartIndices.size() > 1) {
Logger::debug(
"Discovered RISC-V harts: " + std::to_string(this->debugModuleDescriptor.hartIndices.size())
);
Logger::warning("Bloom only supports debugging a single RISC-V hart - selecting first available");
}
this->selectedHartIndex = this->debugModuleDescriptor.hartIndices.front();
Logger::info("Selected RISC-V hart index: " + std::to_string(this->selectedHartIndex));
/*
* Disabling the debug module before enabling it will clear any state from a previous debug session that
* wasn't terminated properly.
*/
this->disableDebugModule();
this->enableDebugModule();
this->stop();
this->debugModuleDescriptor.triggerDescriptorsByIndex = this->discoverTriggers();
Logger::debug(
"Discovered RISC-V triggers: "
+ std::to_string(this->debugModuleDescriptor.triggerDescriptorsByIndex.size())
);
if (!this->debugModuleDescriptor.triggerDescriptorsByIndex.empty()) {
// Clear any left-over triggers from the previous debug session
this->clearAllTriggers();
}
this->initDebugControlStatusRegister();
const auto abstractControlStatusRegister = this->readDebugModuleAbstractControlStatusRegister();
this->debugModuleDescriptor.abstractDataRegisterCount = abstractControlStatusRegister.dataRegisterCount;
this->debugModuleDescriptor.programBufferSize = abstractControlStatusRegister.programBufferSize;
Logger::debug("Data register count: " + std::to_string(this->debugModuleDescriptor.abstractDataRegisterCount));
Logger::debug("Program buffer size: " + std::to_string(this->debugModuleDescriptor.programBufferSize));
this->clearProgramBuffer();
if (this->debugModuleDescriptor.abstractDataRegisterCount > 0) {
if (this->debugModuleDescriptor.programBufferSize >= 3) {
this->debugModuleDescriptor.memoryAccessStrategies.insert(MemoryAccessStrategy::PROGRAM_BUFFER);
}
/*
* Attempt to read a single word from the start of the system address space, via a memory access abstract
* command.
*/
constexpr auto probingMemoryAccessCommand = AbstractCommandRegister{
.control = MemoryAccessControlField{
.postIncrement = true,
.size = MemoryAccessControlField::MemorySize::SIZE_32,
}.value(),
.commandType = AbstractCommandRegister::CommandType::MEMORY_ACCESS
};
this->dtmInterface.writeDebugModuleRegister(
RegisterAddress::ABSTRACT_DATA_1,
this->targetDescriptionFile.getSystemAddressSpace().startAddress
);
if (this->tryExecuteAbstractCommand(probingMemoryAccessCommand) == AbstractCommandError::NONE) {
this->debugModuleDescriptor.memoryAccessStrategies.insert(MemoryAccessStrategy::ABSTRACT_COMMAND);
}
}
if (this->debugModuleDescriptor.memoryAccessStrategies.empty()) {
throw Exceptions::TargetFailure{"Target doesn't support any known memory access strategies"};
}
this->memoryAccessStrategy = this->determineMemoryAccessStrategy();
Logger::debug(
"Selected memory access strategy: " + (
this->memoryAccessStrategy == MemoryAccessStrategy::ABSTRACT_COMMAND
? std::string{"ABSTRACT_COMMAND"}
: std::string{"PROGRAM_BUFFER"}
)
);
}
void DebugTranslator::deactivate() {
this->disableDebugModule();
}
TargetExecutionState DebugTranslator::getExecutionState() {
const auto statusRegister = this->readDebugModuleStatusRegister();
if (statusRegister.anyHaveReset) {
Logger::warning("Reset detected at RISC-V hart " + std::to_string(this->selectedHartIndex));
if (statusRegister.anyRunning) {
this->stop();
}
this->initDebugControlStatusRegister();
this->writeDebugModuleControlRegister(ControlRegister{
.debugModuleActive = true,
.selectedHartIndex = this->selectedHartIndex,
.acknowledgeHaveReset = true,
});
if (statusRegister.anyRunning) {
this->run();
}
}
return statusRegister.anyRunning
? TargetExecutionState::RUNNING
: TargetExecutionState::STOPPED;
}
void DebugTranslator::stop() {
auto controlRegister = ControlRegister{
.debugModuleActive = true,
.selectedHartIndex = this->selectedHartIndex,
.haltRequest = true,
};
this->writeDebugModuleControlRegister(controlRegister);
auto statusRegister = this->readDebugModuleStatusRegister();
for (
auto attempts = 0;
!statusRegister.allHalted
&& (DebugTranslator::DEBUG_MODULE_RESPONSE_DELAY * attempts) <= this->config.targetResponseTimeout;
++attempts
) {
std::this_thread::sleep_for(DebugTranslator::DEBUG_MODULE_RESPONSE_DELAY);
statusRegister = this->readDebugModuleStatusRegister();
}
controlRegister.haltRequest = false;
this->writeDebugModuleControlRegister(controlRegister);
if (!statusRegister.allHalted) {
throw Exceptions::TargetOperationFailure{"Target took too long to halt selected harts"};
}
}
void DebugTranslator::run() {
auto controlRegister = ControlRegister{
.debugModuleActive = true,
.setResetHaltRequest = true,
.selectedHartIndex = this->selectedHartIndex,
.resumeRequest = true,
};
this->writeDebugModuleControlRegister(controlRegister);
auto statusRegister = this->readDebugModuleStatusRegister();
for (
auto attempts = 0;
!statusRegister.allResumeAcknowledge
&& (DebugTranslator::DEBUG_MODULE_RESPONSE_DELAY * attempts) <= this->config.targetResponseTimeout;
++attempts
) {
std::this_thread::sleep_for(DebugTranslator::DEBUG_MODULE_RESPONSE_DELAY);
statusRegister = this->readDebugModuleStatusRegister();
}
controlRegister.resumeRequest = false;
this->writeDebugModuleControlRegister(controlRegister);
if (!statusRegister.allResumeAcknowledge) {
Logger::debug("Failed to resume target execution - stopping target");
this->stop();
throw Exceptions::TargetOperationFailure{"Target took too long to acknowledge resume request"};
}
}
void DebugTranslator::step() {
auto debugControlStatusRegister = this->readDebugControlStatusRegister();
debugControlStatusRegister.step = true;
this->writeDebugControlStatusRegister(debugControlStatusRegister);
auto controlRegister = ControlRegister{
.debugModuleActive = true,
.setResetHaltRequest = true,
.selectedHartIndex = this->selectedHartIndex,
.resumeRequest = true,
};
this->writeDebugModuleControlRegister(controlRegister);
controlRegister.resumeRequest = false;
this->writeDebugModuleControlRegister(controlRegister);
debugControlStatusRegister.step = false;
this->writeDebugControlStatusRegister(debugControlStatusRegister);
}
void DebugTranslator::reset() {
this->writeDebugModuleControlRegister(ControlRegister{
.debugModuleActive = true,
.ndmReset = true,
.setResetHaltRequest = true,
.selectedHartIndex = this->selectedHartIndex,
.haltRequest = true,
});
this->writeDebugModuleControlRegister(ControlRegister{
.debugModuleActive = true,
.selectedHartIndex = this->selectedHartIndex,
.haltRequest = true,
});
auto statusRegister = this->readDebugModuleStatusRegister();
for (
auto attempts = 0;
!statusRegister.allHaveReset
&& (DebugTranslator::DEBUG_MODULE_RESPONSE_DELAY * attempts) <= this->config.targetResponseTimeout;
++attempts
) {
std::this_thread::sleep_for(DebugTranslator::DEBUG_MODULE_RESPONSE_DELAY);
statusRegister = this->readDebugModuleStatusRegister();
}
this->writeDebugModuleControlRegister(ControlRegister{
.debugModuleActive = true,
.setResetHaltRequest = true,
.selectedHartIndex = this->selectedHartIndex,
.acknowledgeHaveReset = true,
.haltRequest = true,
});
if (!statusRegister.allHaveReset) {
throw Exceptions::TargetOperationFailure{"Target took too long to reset"};
}
this->initDebugControlStatusRegister();
}
std::uint16_t DebugTranslator::getTriggerCount() const {
return static_cast<std::uint16_t>(this->debugModuleDescriptor.triggerDescriptorsByIndex.size());
}
void DebugTranslator::insertTriggerBreakpoint(TargetMemoryAddress address) {
using TriggerModule::TriggerType;
// We may already have a trigger for this address. If so, reuse it.
const auto preexistingTriggerIndexIt = this->triggerIndicesByBreakpointAddress.find(address);
auto triggerDescriptorOpt = preexistingTriggerIndexIt != this->triggerIndicesByBreakpointAddress.end()
? std::cref(this->debugModuleDescriptor.triggerDescriptorsByIndex.at(preexistingTriggerIndexIt->second))
: this->getAvailableTrigger();
if (!triggerDescriptorOpt.has_value()) {
throw Exceptions::TargetOperationFailure{"Insufficient resources - no available trigger"};
}
const auto& triggerDescriptor = triggerDescriptorOpt->get();
Logger::debug(
"Installing RISC-V trigger for program address 0x" + Services::StringService::toHex(address)
+ " with trigger index " + std::to_string(triggerDescriptor.index)
);
if (triggerDescriptor.supportedTypes.contains(TriggerType::MATCH_CONTROL)) {
using TriggerModule::Registers::MatchControl;
this->writeCpuRegister(
CpuRegisterNumber::TRIGGER_SELECT,
TriggerModule::Registers::TriggerSelect{triggerDescriptor.index}.value()
);
this->writeCpuRegister(
CpuRegisterNumber::TRIGGER_DATA_1,
MatchControl{
.execute = true,
.enabledInUserMode = true,
.enabledInSupervisorMode = true,
.enabledInMachineMode = true,
.action = TriggerModule::TriggerAction::ENTER_DEBUG_MODE,
.accessSize = MatchControl::AccessSize::ANY,
.compareValueType = MatchControl::CompareValueType::ADDRESS,
}.value()
);
this->writeCpuRegister(CpuRegisterNumber::TRIGGER_DATA_2, address);
this->allocatedTriggerIndices.emplace(triggerDescriptor.index);
this->triggerIndicesByBreakpointAddress.emplace(address, triggerDescriptor.index);
return;
}
throw Exceptions::TargetOperationFailure{"Unsupported trigger"};
}
void DebugTranslator::clearTriggerBreakpoint(TargetMemoryAddress address) {
const auto triggerIndexIt = this->triggerIndicesByBreakpointAddress.find(address);
if (triggerIndexIt == this->triggerIndicesByBreakpointAddress.end()) {
throw Exceptions::TargetOperationFailure{"Unknown hardware breakpoint"};
}
const auto& triggerDescriptor = this->debugModuleDescriptor.triggerDescriptorsByIndex.at(triggerIndexIt->second);
this->clearTrigger(triggerDescriptor);
this->triggerIndicesByBreakpointAddress.erase(address);
this->allocatedTriggerIndices.erase(triggerDescriptor.index);
}
void DebugTranslator::clearAllTriggers() {
// To ensure that any untracked breakpoints are cleared, we clear all triggers on the target.
for (const auto& [triggerIndex, triggerDescriptor] : this->debugModuleDescriptor.triggerDescriptorsByIndex) {
this->clearTrigger(triggerDescriptor);
}
this->triggerIndicesByBreakpointAddress.clear();
this->allocatedTriggerIndices.clear();
}
TargetRegisterDescriptorAndValuePairs DebugTranslator::readCpuRegisters(
const TargetRegisterDescriptors& descriptors
) {
auto output = TargetRegisterDescriptorAndValuePairs{};
for (const auto& descriptor : descriptors) {
const auto registerValue = this->readCpuRegister(static_cast<RegisterNumber>(descriptor->startAddress));
output.emplace_back(
*descriptor,
TargetMemoryBuffer{
static_cast<unsigned char>(registerValue >> 24),
static_cast<unsigned char>(registerValue >> 16),
static_cast<unsigned char>(registerValue >> 8),
static_cast<unsigned char>(registerValue),
}
);
}
return output;
}
void DebugTranslator::writeCpuRegisters(const TargetRegisterDescriptorAndValuePairs& registers) {
for (const auto& [descriptor, value] : registers) {
assert((value.size() * 8) <= std::numeric_limits<RegisterValue>::digits);
auto registerValue = RegisterValue{0};
for (const auto& registerByte : value) {
registerValue = (registerValue << 8) | registerByte;
}
this->writeCpuRegister(static_cast<RegisterNumber>(descriptor.startAddress), registerValue);
}
}
TargetMemoryBuffer DebugTranslator::readMemory(
const TargetAddressSpaceDescriptor& addressSpaceDescriptor,
const TargetMemorySegmentDescriptor& memorySegmentDescriptor,
TargetMemoryAddress startAddress,
TargetMemorySize bytes,
const std::set<TargetMemoryAddressRange>& excludedAddressRanges
) {
// TODO: excluded addresses
constexpr auto alignTo = DebugTranslator::WORD_BYTE_SIZE;
if ((startAddress % alignTo) != 0 || (bytes % alignTo) != 0) {
// Alignment required
const auto alignedStartAddress = this->alignMemoryAddress(startAddress, alignTo);
const auto alignedBytes = this->alignMemorySize(bytes + (startAddress - alignedStartAddress), alignTo);
const auto memoryBuffer = this->readMemory(
addressSpaceDescriptor,
memorySegmentDescriptor,
alignedStartAddress,
alignedBytes,
excludedAddressRanges
);
const auto offset = memoryBuffer.begin() + (startAddress - alignedStartAddress);
return TargetMemoryBuffer{offset, offset + bytes};
}
if (this->memoryAccessStrategy == MemoryAccessStrategy::PROGRAM_BUFFER) {
return this->readMemoryViaProgramBuffer(startAddress, bytes);
}
if (this->memoryAccessStrategy == MemoryAccessStrategy::ABSTRACT_COMMAND) {
return this->readMemoryViaAbstractCommand(startAddress, bytes);
}
throw Exceptions::InternalFatalErrorException{"Unknown selected memory access strategy"};
}
void DebugTranslator::writeMemory(
const TargetAddressSpaceDescriptor& addressSpaceDescriptor,
const TargetMemorySegmentDescriptor& memorySegmentDescriptor,
TargetMemoryAddress startAddress,
TargetMemoryBufferSpan buffer
) {
constexpr auto alignTo = DebugTranslator::WORD_BYTE_SIZE;
const auto bytes = static_cast<TargetMemorySize>(buffer.size());
if ((startAddress % alignTo) != 0 || (bytes % alignTo) != 0) {
/*
* Alignment required
*
* To align the write operation, we read the front and back offset bytes and use them to construct an
* aligned buffer.
*/
const auto alignedStartAddress = this->alignMemoryAddress(startAddress, alignTo);
const auto alignedBytes = this->alignMemorySize(bytes + (startAddress - alignedStartAddress), alignTo);
assert(alignedBytes > bytes);
auto alignedBuffer = (alignedStartAddress < startAddress)
? this->readMemory(
addressSpaceDescriptor,
memorySegmentDescriptor,
alignedStartAddress,
(startAddress - alignedStartAddress),
{}
)
: TargetMemoryBuffer{};
alignedBuffer.resize(alignedBytes);
std::copy(
buffer.begin(),
buffer.end(),
alignedBuffer.begin() + (startAddress - alignedStartAddress)
);
const auto dataBack = this->readMemory(
addressSpaceDescriptor,
memorySegmentDescriptor,
startAddress + bytes,
alignedBytes - bytes - (startAddress - alignedStartAddress),
{}
);
std::copy(
dataBack.begin(),
dataBack.end(),
alignedBuffer.begin() + (startAddress - alignedStartAddress) + bytes
);
return this->writeMemory(
addressSpaceDescriptor,
memorySegmentDescriptor,
alignedStartAddress,
alignedBuffer
);
}
if (this->memoryAccessStrategy == MemoryAccessStrategy::PROGRAM_BUFFER) {
return this->writeMemoryViaProgramBuffer(startAddress, buffer);
}
if (this->memoryAccessStrategy == MemoryAccessStrategy::ABSTRACT_COMMAND) {
return this->writeMemoryViaAbstractCommand(startAddress, buffer);
}
throw Exceptions::InternalFatalErrorException{"Unknown selected memory access strategy"};
}
AbstractCommandError DebugTranslator::readAndClearAbstractCommandError() {
const auto commandError = this->readDebugModuleAbstractControlStatusRegister().commandError;
if (commandError != AbstractCommandError::NONE) {
this->clearAbstractCommandError();
}
return commandError;
}
void DebugTranslator::clearProgramBuffer() {
if (this->debugModuleDescriptor.programBufferSize < 1) {
return;
}
static constexpr auto clearedBuffer = Array::repeat<DebugTranslator::MAX_PROGRAM_BUFFER_SIZE>(Opcodes::Ebreak);
assert(this->debugModuleDescriptor.programBufferSize <= DebugTranslator::MAX_PROGRAM_BUFFER_SIZE);
this->writeProgramBuffer({clearedBuffer.begin(), this->debugModuleDescriptor.programBufferSize});
}
void DebugTranslator::executeFenceProgram() {
static constexpr auto programOpcodes = std::to_array<Opcodes::Opcode>({
Opcodes::FenceI,
Opcodes::Fence,
Opcodes::Ebreak,
});
if (programOpcodes.size() > this->debugModuleDescriptor.programBufferSize) {
throw Exceptions::TargetOperationFailure{
"Cannot execute fence program via RISC-V debug module program buffer - insufficient program buffer size"
};
}
this->writeProgramBuffer(programOpcodes);
this->readCpuRegister(CpuRegisterNumber::GPR_X8, {.postExecute = true});
}
std::vector<DebugModule::HartIndex> DebugTranslator::discoverHartIndices() {
auto hartIndices = std::vector<DebugModule::HartIndex>{};
/*
* We can obtain the maximum hart index by setting all of the hartsel bits in the control register and then
* read the value back.
*/
this->writeDebugModuleControlRegister(
ControlRegister{.debugModuleActive = true, .selectedHartIndex = 0xFFFFF}
);
const auto maxHartIndex = this->readDebugModuleControlRegister().selectedHartIndex;
for (auto hartIndex = DebugModule::HartIndex{0}; hartIndex <= maxHartIndex; ++hartIndex) {
/*
* We can't just assume that everything between 0 and the maximum hart index are valid hart indices. We
* have to test each index until we find one that is non-existent.
*/
this->writeDebugModuleControlRegister(
ControlRegister{.debugModuleActive = true, .selectedHartIndex = hartIndex}
);
/*
* It's worth noting that some RISC-V targets **do not** set the non-existent flags. I'm not sure why.
* Maybe hartsel has been hardwired to 0 on targets that only support a single hart, preventing the
* selection of non-existent harts.
*
* Relying on the maximum hart index seems to be all we can do in this case.
*/
if (this->readDebugModuleStatusRegister().anyNonExistent) {
break;
}
hartIndices.emplace_back(hartIndex);
}
return hartIndices;
}
std::unordered_map<
TriggerModule::TriggerIndex,
TriggerModule::TriggerDescriptor
> DebugTranslator::discoverTriggers() {
auto output = std::unordered_map<TriggerModule::TriggerIndex, TriggerModule::TriggerDescriptor>{};
constexpr auto MAX_TRIGGER_INDEX = 10;
for (auto triggerIndex = TriggerModule::TriggerIndex{0}; triggerIndex <= MAX_TRIGGER_INDEX; ++triggerIndex) {
const auto selectRegValue = TriggerModule::Registers::TriggerSelect{triggerIndex}.value();
const auto writeSelectError = this->tryWriteCpuRegister(CpuRegisterNumber::TRIGGER_SELECT, selectRegValue);
if (writeSelectError == AbstractCommandError::EXCEPTION) {
break;
}
if (writeSelectError != AbstractCommandError::NONE) {
throw Exceptions::TargetOperationFailure{
"Failed to write to TRIGGER_SELECT register - abstract command error: 0x"
+ Services::StringService::toHex(static_cast<std::uint8_t>(writeSelectError))
};
}
if (this->readCpuRegister(CpuRegisterNumber::TRIGGER_SELECT) != selectRegValue) {
break;
}
const auto infoReg = TriggerModule::Registers::TriggerInfo::fromValue(
this->readCpuRegister(CpuRegisterNumber::TRIGGER_INFO)
);
if (infoReg.info == 0x01) {
// Trigger doesn't exist
break;
}
auto supportedTypes = infoReg.getSupportedTriggerTypes();
if (supportedTypes.empty()) {
// The trigger info register has no trigger type info. Try the data1 register.
const auto data1Reg = TriggerModule::Registers::TriggerData1::fromValue(
this->readCpuRegister(CpuRegisterNumber::TRIGGER_DATA_1)
);
const auto triggerType = data1Reg.getType();
if (!triggerType.has_value()) {
// Trigger data1 register also lacks type info. Assume the trigger doesn't exist
break;
}
supportedTypes.insert(*triggerType);
}
output.emplace(triggerIndex, TriggerModule::TriggerDescriptor{triggerIndex, supportedTypes});
}
return output;
}
ControlRegister DebugTranslator::readDebugModuleControlRegister() {
return ControlRegister::fromValue(
this->dtmInterface.readDebugModuleRegister(RegisterAddress::CONTROL_REGISTER)
);
}
StatusRegister DebugTranslator::readDebugModuleStatusRegister() {
return StatusRegister::fromValue(this->dtmInterface.readDebugModuleRegister(RegisterAddress::STATUS_REGISTER));
}
AbstractControlStatusRegister DebugTranslator::readDebugModuleAbstractControlStatusRegister() {
return AbstractControlStatusRegister::fromValue(
this->dtmInterface.readDebugModuleRegister(RegisterAddress::ABSTRACT_CONTROL_STATUS_REGISTER)
);
}
DebugControlStatusRegister DebugTranslator::readDebugControlStatusRegister() {
return DebugControlStatusRegister::fromValue(
this->readCpuRegister(static_cast<RegisterNumber>(CpuRegisterNumber::DEBUG_CONTROL_STATUS_REGISTER))
);
}
void DebugTranslator::enableDebugModule() {
auto controlRegister = ControlRegister{
.debugModuleActive = true,
.selectedHartIndex = this->selectedHartIndex
};
this->writeDebugModuleControlRegister(controlRegister);
controlRegister = this->readDebugModuleControlRegister();
for (
auto attempts = 0;
!controlRegister.debugModuleActive
&& (DebugTranslator::DEBUG_MODULE_RESPONSE_DELAY * attempts) <= this->config.targetResponseTimeout;
++attempts
) {
std::this_thread::sleep_for(DebugTranslator::DEBUG_MODULE_RESPONSE_DELAY);
controlRegister = this->readDebugModuleControlRegister();
}
if (!controlRegister.debugModuleActive) {
throw Exceptions::TargetOperationFailure{"Took too long to enable debug module"};
}
}
void DebugTranslator::disableDebugModule() {
this->writeDebugModuleControlRegister(
ControlRegister{.debugModuleActive = false, .selectedHartIndex = this->selectedHartIndex}
);
auto controlRegister = this->readDebugModuleControlRegister();
for (
auto attempts = 0;
controlRegister.debugModuleActive
&& (DebugTranslator::DEBUG_MODULE_RESPONSE_DELAY * attempts) <= this->config.targetResponseTimeout;
++attempts
) {
std::this_thread::sleep_for(DebugTranslator::DEBUG_MODULE_RESPONSE_DELAY);
controlRegister = this->readDebugModuleControlRegister();
}
if (controlRegister.debugModuleActive) {
throw Exceptions::TargetOperationFailure{"Took too long to disable debug module"};
}
}
void DebugTranslator::initDebugControlStatusRegister() {
this->writeDebugControlStatusRegister(DebugControlStatusRegister{
.breakUMode = true,
.breakSMode = true,
.breakMMode = true,
.breakVUMode = true,
.breakVSMode = true,
});
}
Expected<RegisterValue, AbstractCommandError> DebugTranslator::tryReadCpuRegister(
RegisterNumber number,
const RegisterAccessControlField::Flags& flags
) {
const auto commandError = this->tryExecuteAbstractCommand(AbstractCommandRegister{
.control = RegisterAccessControlField{
.registerNumber = number,
.transfer = true,
.flags = flags,
.size= RegisterAccessControlField::RegisterSize::SIZE_32
}.value(),
.commandType = AbstractCommandRegister::CommandType::REGISTER_ACCESS
});
if (commandError != AbstractCommandError::NONE) {
return commandError;
}
return this->dtmInterface.readDebugModuleRegister(RegisterAddress::ABSTRACT_DATA_0);
}
Expected<RegisterValue, AbstractCommandError> DebugTranslator::tryReadCpuRegister(
Registers::CpuRegisterNumber number,
const RegisterAccessControlField::Flags& flags
) {
return this->tryReadCpuRegister(static_cast<RegisterNumber>(number), flags);
}
RegisterValue DebugTranslator::readCpuRegister(
RegisterNumber number,
const RegisterAccessControlField::Flags& flags
) {
const auto result = this->tryReadCpuRegister(number, flags);
if (!result.hasValue()) {
throw Exceptions::TargetOperationFailure{
"Failed to read CPU register (number: 0x" + Services::StringService::toHex(number)
+ ") - abstract command error: 0x"
+ Services::StringService::toHex(static_cast<std::uint8_t>(result.error()))
};
}
return result.value();
}
RegisterValue DebugTranslator::readCpuRegister(
Registers::CpuRegisterNumber number,
const RegisterAccessControlField::Flags& flags
) {
return this->readCpuRegister(static_cast<RegisterNumber>(number), flags);
}
AbstractCommandError DebugTranslator::tryWriteCpuRegister(
RegisterNumber number,
RegisterValue value,
const RegisterAccessControlField::Flags& flags
) {
this->dtmInterface.writeDebugModuleRegister(RegisterAddress::ABSTRACT_DATA_0, value);
return this->tryExecuteAbstractCommand(AbstractCommandRegister{
.control = RegisterAccessControlField{
.registerNumber = number,
.write = true,
.transfer = true,
.flags = flags,
.size = RegisterAccessControlField::RegisterSize::SIZE_32
}.value(),
.commandType = AbstractCommandRegister::CommandType::REGISTER_ACCESS
});
}
AbstractCommandError DebugTranslator::tryWriteCpuRegister(
Registers::CpuRegisterNumber number,
RegisterValue value,
const RegisterAccessControlField::Flags& flags
) {
return this->tryWriteCpuRegister(static_cast<RegisterNumber>(number), value, flags);
}
void DebugTranslator::writeCpuRegister(
RegisterNumber number,
RegisterValue value,
const RegisterAccessControlField::Flags& flags
) {
const auto commandError = this->tryWriteCpuRegister(number, value, flags);
if (commandError != AbstractCommandError::NONE) {
throw Exceptions::TargetOperationFailure{
"Failed to write to CPU register (number: 0x" + Services::StringService::toHex(number)
+ ") - abstract command error: 0x"
+ Services::StringService::toHex(static_cast<std::uint8_t>(commandError))
};
}
}
void DebugTranslator::writeCpuRegister(
Registers::CpuRegisterNumber number,
RegisterValue value,
const RegisterAccessControlField::Flags& flags
) {
this->writeCpuRegister(static_cast<RegisterNumber>(number), value, flags);
}
void DebugTranslator::writeDebugModuleControlRegister(const ControlRegister& controlRegister) {
this->dtmInterface.writeDebugModuleRegister(RegisterAddress::CONTROL_REGISTER, controlRegister.value());
}
void DebugTranslator::writeDebugControlStatusRegister(const DebugControlStatusRegister& controlRegister) {
this->writeCpuRegister(
static_cast<RegisterNumber>(CpuRegisterNumber::DEBUG_CONTROL_STATUS_REGISTER),
controlRegister.value()
);
}
void DebugTranslator::clearAbstractCommandError() {
this->dtmInterface.writeDebugModuleRegister(
RegisterAddress::ABSTRACT_CONTROL_STATUS_REGISTER,
AbstractControlStatusRegister{.commandError = AbstractCommandError::CLEAR}.value()
);
}
AbstractCommandError DebugTranslator::tryExecuteAbstractCommand(
const DebugModule::Registers::AbstractCommandRegister& abstractCommandRegister
) {
this->dtmInterface.writeDebugModuleRegister(
RegisterAddress::ABSTRACT_COMMAND_REGISTER,
abstractCommandRegister.value()
);
auto abstractStatusRegister = this->readDebugModuleAbstractControlStatusRegister();
for (
auto attempts = 0;
abstractStatusRegister.busy
&& (DebugTranslator::DEBUG_MODULE_RESPONSE_DELAY * attempts) <= this->config.targetResponseTimeout;
++attempts
) {
std::this_thread::sleep_for(DebugTranslator::DEBUG_MODULE_RESPONSE_DELAY);
abstractStatusRegister = this->readDebugModuleAbstractControlStatusRegister();
}
if (abstractStatusRegister.busy) {
throw Exceptions::TargetOperationFailure{"Abstract command took too long to execute"};
}
if (abstractStatusRegister.commandError != AbstractCommandError::NONE) {
this->clearAbstractCommandError();
}
return abstractStatusRegister.commandError;
}
void DebugTranslator::executeAbstractCommand(
const DebugModule::Registers::AbstractCommandRegister& abstractCommandRegister
) {
const auto commandError = this->tryExecuteAbstractCommand(abstractCommandRegister);
if (commandError != AbstractCommandError::NONE) {
throw Exceptions::TargetOperationFailure{
"Failed to execute abstract command - error: 0x"
+ Services::StringService::toHex(static_cast<std::uint8_t>(commandError))
};
}
}
MemoryAccessStrategy DebugTranslator::determineMemoryAccessStrategy() {
assert(!this->debugModuleDescriptor.memoryAccessStrategies.empty());
if (
this->config.preferredMemoryAccessStrategy.has_value()
&& this->debugModuleDescriptor.memoryAccessStrategies.contains(
*(this->config.preferredMemoryAccessStrategy)
)
) {
return *(this->config.preferredMemoryAccessStrategy);
}
// Favour the abstract command strategy, as it seems to be faster on the targets currently supported by Bloom.
return this->debugModuleDescriptor.memoryAccessStrategies.contains(MemoryAccessStrategy::ABSTRACT_COMMAND)
? MemoryAccessStrategy::ABSTRACT_COMMAND
: *(this->debugModuleDescriptor.memoryAccessStrategies.begin());
}
TargetMemoryAddress DebugTranslator::alignMemoryAddress(TargetMemoryAddress address, TargetMemoryAddress alignTo) {
return (address / alignTo) * alignTo;
}
TargetMemorySize DebugTranslator::alignMemorySize(TargetMemorySize size, TargetMemorySize alignTo) {
return static_cast<TargetMemorySize>(
std::ceil(static_cast<double>(size) / static_cast<double>(alignTo))
) * alignTo;
}
Targets::TargetMemoryBuffer DebugTranslator::readMemoryViaAbstractCommand(
Targets::TargetMemoryAddress startAddress,
Targets::TargetMemorySize bytes
) {
assert(startAddress % DebugTranslator::WORD_BYTE_SIZE == 0);
assert(bytes % DebugTranslator::WORD_BYTE_SIZE == 0);
/*
* We only need to set the address once. No need to update it as we use the post-increment function to
* increment the address. See MemoryAccessControlField::postIncrement
*/
this->dtmInterface.writeDebugModuleRegister(RegisterAddress::ABSTRACT_DATA_1, startAddress);
constexpr auto command = AbstractCommandRegister{
.control = MemoryAccessControlField{
.postIncrement = true,
.size = MemoryAccessControlField::MemorySize::SIZE_32,
}.value(),
.commandType = AbstractCommandRegister::CommandType::MEMORY_ACCESS
};
auto output = TargetMemoryBuffer{};
output.reserve(bytes);
for (auto address = startAddress; address <= (startAddress + bytes - 1); address += 4) {
const auto commandError = this->tryExecuteAbstractCommand(command);
if (commandError != AbstractCommandError::NONE) {
if (commandError == AbstractCommandError::EXCEPTION) {
throw Exceptions::IllegalMemoryAccess{};
}
throw Exceptions::TargetOperationFailure{
"Failed to read memory via abstract command - error: 0x"
+ Services::StringService::toHex(static_cast<std::uint8_t>(commandError))
};
}
const auto data = this->dtmInterface.readDebugModuleRegister(RegisterAddress::ABSTRACT_DATA_0);
output.emplace_back(static_cast<unsigned char>(data));
output.emplace_back(static_cast<unsigned char>(data >> 8));
output.emplace_back(static_cast<unsigned char>(data >> 16));
output.emplace_back(static_cast<unsigned char>(data >> 24));
}
return output;
}
void DebugTranslator::writeMemoryViaAbstractCommand(
Targets::TargetMemoryAddress startAddress,
Targets::TargetMemoryBufferSpan buffer
) {
using DebugModule::Registers::MemoryAccessControlField;
assert(startAddress % DebugTranslator::WORD_BYTE_SIZE == 0);
assert(buffer.size() % DebugTranslator::WORD_BYTE_SIZE == 0);
this->dtmInterface.writeDebugModuleRegister(RegisterAddress::ABSTRACT_DATA_1, startAddress);
static constexpr auto command = AbstractCommandRegister{
.control = MemoryAccessControlField{
.write = true,
.postIncrement = true,
.size = MemoryAccessControlField::MemorySize::SIZE_32,
}.value(),
.commandType = AbstractCommandRegister::CommandType::MEMORY_ACCESS
};
for (auto offset = std::size_t{0}; offset < buffer.size(); offset += 4) {
this->dtmInterface.writeDebugModuleRegister(
RegisterAddress::ABSTRACT_DATA_0,
static_cast<RegisterValue>(
(buffer[offset + 3] << 24)
| (buffer[offset + 2] << 16)
| (buffer[offset + 1] << 8)
| (buffer[offset])
)
);
const auto commandError = this->tryExecuteAbstractCommand(command);
if (commandError != AbstractCommandError::NONE) {
if (commandError == AbstractCommandError::EXCEPTION) {
throw Exceptions::IllegalMemoryAccess{};
}
throw Exceptions::TargetOperationFailure{
"Failed to write memory via abstract command - error: 0x"
+ Services::StringService::toHex(static_cast<std::uint8_t>(commandError))
};
}
}
}
Targets::TargetMemoryBuffer DebugTranslator::readMemoryViaProgramBuffer(
Targets::TargetMemoryAddress startAddress,
Targets::TargetMemorySize bytes
) {
assert(startAddress % DebugTranslator::WORD_BYTE_SIZE == 0);
assert(bytes % DebugTranslator::WORD_BYTE_SIZE == 0);
static constexpr auto programOpcodes = std::to_array<Opcodes::Opcode>({
Opcodes::Lw{
.destinationRegister = Opcodes::GprNumber::X9,
.baseAddressRegister = Opcodes::GprNumber::X8,
.addressOffset = 0
}.opcode(),
Opcodes::Addi{
.destinationRegister = Opcodes::GprNumber::X8,
.sourceRegister = Opcodes::GprNumber::X8,
.value = DebugTranslator::WORD_BYTE_SIZE
}.opcode(),
Opcodes::Ebreak,
});
if (programOpcodes.size() > this->debugModuleDescriptor.programBufferSize) {
throw Exceptions::TargetOperationFailure{
"Cannot read memory via RISC-V debug module program buffer - insufficient program buffer size"
};
}
auto preservedX8Register = PreservedCpuRegister{CpuRegisterNumber::GPR_X8, *this};
auto preservedX9Register = PreservedCpuRegister{CpuRegisterNumber::GPR_X9, *this};
try {
this->writeProgramBuffer(programOpcodes);
auto commandError = this->tryWriteCpuRegister(
CpuRegisterNumber::GPR_X8,
startAddress,
{.postExecute = true}
);
if (commandError != AbstractCommandError::NONE) {
if (commandError == AbstractCommandError::EXCEPTION) {
throw Exceptions::IllegalMemoryAccess{};
}
throw Exceptions::TargetOperationFailure{
"Program buffer execution failed - abstract command error: 0x"
+ Services::StringService::toHex(commandError)
};
}
auto output = Targets::TargetMemoryBuffer{};
output.reserve(bytes);
if (bytes == DebugTranslator::WORD_BYTE_SIZE) {
const auto word = this->readCpuRegister(CpuRegisterNumber::GPR_X9);
output.emplace_back(static_cast<unsigned char>(word));
output.emplace_back(static_cast<unsigned char>(word >> 8));
output.emplace_back(static_cast<unsigned char>(word >> 16));
output.emplace_back(static_cast<unsigned char>(word >> 24));
preservedX8Register.restore();
preservedX9Register.restore();
return output;
}
// Populate the abstract command register with a register access command, to read X9 into data0.
this->readCpuRegister(CpuRegisterNumber::GPR_X9, {.postExecute = true});
/*
* At this point, the program buffer will have already been executed twice, with the first word currently
* residing in data0, and the second in X9.
*
* The abstract command register will be populated with a register access command, to read X9 into data0,
* with 'postexec' enabled. Enabling auto execution at this point will mean that the abstract command will
* be executed every time we access the data0 register, resulting in the next word being copied into
* data0 (from X9) and the program buffer being executed again (filling X9 with another word).
*
* To avoid reading an excess of words (which could result in an out-of-bounds exception), we only enable
* auto execution if we require more data that what has already been read.
*/
const auto autoExecutionEnabled = bytes > (DebugTranslator::WORD_BYTE_SIZE * 2);
this->dtmInterface.writeDebugModuleRegister(
RegisterAddress::ABSTRACT_COMMAND_AUTO_EXECUTE_REGISTER,
AbstractCommandAutoExecuteRegister{.onData0Access = autoExecutionEnabled}.value()
);
while (output.size() < (bytes - DebugTranslator::WORD_BYTE_SIZE)) {
if (autoExecutionEnabled && output.size() >= (bytes - DebugTranslator::WORD_BYTE_SIZE * 2)) {
/*
* We're on the second to last word, which has already been read and currently resides in data0.
* The last word has also been read and currently resides in X9.
*
* Disable auto execution here to prevent any further reads.
*/
this->dtmInterface.writeDebugModuleRegister(
RegisterAddress::ABSTRACT_COMMAND_AUTO_EXECUTE_REGISTER,
AbstractCommandAutoExecuteRegister{}.value()
);
}
const auto word = this->dtmInterface.readDebugModuleRegister(RegisterAddress::ABSTRACT_DATA_0);
output.emplace_back(static_cast<unsigned char>(word));
output.emplace_back(static_cast<unsigned char>(word >> 8));
output.emplace_back(static_cast<unsigned char>(word >> 16));
output.emplace_back(static_cast<unsigned char>(word >> 24));
}
commandError = this->readAndClearAbstractCommandError();
if (commandError != AbstractCommandError::NONE) {
if (commandError == AbstractCommandError::EXCEPTION) {
throw Exceptions::IllegalMemoryAccess{};
}
throw Exceptions::TargetOperationFailure{
"Program buffer execution failed - abstract command error: 0x"
+ Services::StringService::toHex(commandError)
};
}
const auto lastWord = this->readCpuRegister(CpuRegisterNumber::GPR_X9);
output.emplace_back(static_cast<unsigned char>(lastWord));
output.emplace_back(static_cast<unsigned char>(lastWord >> 8));
output.emplace_back(static_cast<unsigned char>(lastWord >> 16));
output.emplace_back(static_cast<unsigned char>(lastWord >> 24));
preservedX8Register.restore();
preservedX9Register.restore();
return output;
} catch (const Exceptions::Exception&) {
preservedX8Register.restoreOnce();
preservedX9Register.restoreOnce();
throw;
}
}
void DebugTranslator::writeMemoryViaProgramBuffer(
Targets::TargetMemoryAddress startAddress,
Targets::TargetMemoryBufferSpan buffer
) {
assert(startAddress % DebugTranslator::WORD_BYTE_SIZE == 0);
assert(buffer.size() % DebugTranslator::WORD_BYTE_SIZE == 0);
static constexpr auto programOpcodes = std::to_array<Opcodes::Opcode>({
Opcodes::Sw{
.baseAddressRegister = Opcodes::GprNumber::X8,
.valueRegister = Opcodes::GprNumber::X9,
.addressOffset = 0
}.opcode(),
Opcodes::Addi{
.destinationRegister = Opcodes::GprNumber::X8,
.sourceRegister = Opcodes::GprNumber::X8,
.value = DebugTranslator::WORD_BYTE_SIZE
}.opcode(),
Opcodes::Ebreak,
});
if (programOpcodes.size() > this->debugModuleDescriptor.programBufferSize) {
throw Exceptions::TargetOperationFailure{
"Cannot write to memory via RISC-V debug module program buffer - insufficient program buffer size"
};
}
auto preservedX8Register = PreservedCpuRegister{CpuRegisterNumber::GPR_X8, *this};
auto preservedX9Register = PreservedCpuRegister{CpuRegisterNumber::GPR_X9, *this};
try {
this->writeProgramBuffer(programOpcodes);
this->writeCpuRegister(CpuRegisterNumber::GPR_X8, startAddress, {.postExecute = false});
this->writeCpuRegister(
CpuRegisterNumber::GPR_X9,
static_cast<RegisterValue>(
(buffer[3] << 24)
| (buffer[2] << 16)
| (buffer[1] << 8)
| (buffer[0])
),
{.postExecute = true}
);
this->dtmInterface.writeDebugModuleRegister(
RegisterAddress::ABSTRACT_COMMAND_AUTO_EXECUTE_REGISTER,
AbstractCommandAutoExecuteRegister{.onData0Access = true}.value()
);
for (
auto offset = std::size_t{DebugTranslator::WORD_BYTE_SIZE};
offset < buffer.size();
offset += DebugTranslator::WORD_BYTE_SIZE
) {
this->dtmInterface.writeDebugModuleRegister(
RegisterAddress::ABSTRACT_DATA_0,
static_cast<RegisterValue>(
(buffer[offset + 3] << 24)
| (buffer[offset + 2] << 16)
| (buffer[offset + 1] << 8)
| (buffer[offset])
)
);
}
this->dtmInterface.writeDebugModuleRegister(
RegisterAddress::ABSTRACT_COMMAND_AUTO_EXECUTE_REGISTER,
AbstractCommandAutoExecuteRegister{}.value()
);
const auto commandError = this->readAndClearAbstractCommandError();
if (commandError != AbstractCommandError::NONE) {
if (commandError == AbstractCommandError::EXCEPTION) {
throw Exceptions::IllegalMemoryAccess{};
}
throw Exceptions::TargetOperationFailure{
"Program buffer execution failed - abstract command error: 0x"
+ Services::StringService::toHex(commandError)
};
}
preservedX8Register.restore();
preservedX9Register.restore();
} catch (const Exceptions::Exception&) {
preservedX8Register.restoreOnce();
preservedX9Register.restoreOnce();
throw;
}
}
void DebugTranslator::writeProgramBuffer(std::span<const Targets::RiscV::Opcodes::Opcode> opcodes) {
assert(opcodes.size() <= 16);
assert(opcodes.size() <= this->debugModuleDescriptor.programBufferSize);
auto programBufferAddress = static_cast<DebugModule::RegisterAddress>(RegisterAddress::PROGRAM_BUFFER_0);
for (const auto& opcode : opcodes) {
this->dtmInterface.writeDebugModuleRegister(programBufferAddress, opcode);
++programBufferAddress;
}
}
std::optional<
std::reference_wrapper<const TriggerModule::TriggerDescriptor>
> DebugTranslator::getAvailableTrigger() {
for (const auto& [index, descriptor] : this->debugModuleDescriptor.triggerDescriptorsByIndex) {
if (this->allocatedTriggerIndices.contains(index)) {
continue;
}
return descriptor;
}
return std::nullopt;
}
void DebugTranslator::clearTrigger(const TriggerModule::TriggerDescriptor& triggerDescriptor) {
using TriggerModule::TriggerType;
Logger::debug("Clearing RISC-V trigger (index: " + std::to_string(triggerDescriptor.index) + ")");
if (triggerDescriptor.supportedTypes.contains(TriggerType::MATCH_CONTROL)) {
using TriggerModule::Registers::MatchControl;
this->writeCpuRegister(
CpuRegisterNumber::TRIGGER_SELECT,
TriggerModule::Registers::TriggerSelect{triggerDescriptor.index}.value()
);
this->writeCpuRegister(CpuRegisterNumber::TRIGGER_DATA_1, MatchControl{}.value());
return;
}
throw Exceptions::TargetOperationFailure{"Unsupported trigger"};
}
DebugTranslator::PreservedCpuRegister::PreservedCpuRegister(
Registers::CpuRegisterNumber registerNumber,
RegisterValue value,
DebugTranslator& debugTranslator
)
: registerNumber(registerNumber)
, value(value)
, debugTranslator(debugTranslator)
{}
DebugTranslator::PreservedCpuRegister::PreservedCpuRegister(
Registers::CpuRegisterNumber registerNumber,
DebugTranslator& debugTranslator
)
: PreservedCpuRegister(
registerNumber,
debugTranslator.readCpuRegister(registerNumber),
debugTranslator
)
{}
void DebugTranslator::PreservedCpuRegister::restore() {
try {
this->debugTranslator.writeCpuRegister(this->registerNumber, this->value);
this->restored = true;
} catch (const Exceptions::Exception& exception) {
/*
* If we fail to restore the value of a CPU register, we must escalate this to a fatal error, as the target
* will be left in an undefined state. More specifically, the state of the program running on the target
* may be corrupted. We cannot recover from this.
*
* TargetFailure exceptions are considered to be fatal. A clean shutdown will follow.
*/
throw Exceptions::TargetFailure{
"Failed to restore CPU register (number: 0x"
+ Services::StringService::toHex(this->registerNumber) + ") - error: " + exception.getMessage()
+ " - the target is now in an undefined state and may require a reset"
};
}
}
void DebugTranslator::PreservedCpuRegister::restoreOnce() {
if (this->restored) {
return;
}
this->restore();
}
}