#include "EdbgAvr8Interface.hpp" #include #include #include #include "src/Services/PathService.hpp" #include "src/Services/StringService.hpp" #include "src/Logger/Logger.hpp" #include "Exceptions/Avr8CommandFailure.hpp" #include "src/TargetController/Exceptions/DeviceInitializationFailure.hpp" #include "src/Targets/Microchip/AVR8/Exceptions/DebugWirePhysicalInterfaceError.hpp" // Command frames #include "CommandFrames/AVR8Generic/SetParameter.hpp" #include "CommandFrames/AVR8Generic/GetParameter.hpp" #include "CommandFrames/AVR8Generic/ActivatePhysical.hpp" #include "CommandFrames/AVR8Generic/DeactivatePhysical.hpp" #include "CommandFrames/AVR8Generic/Attach.hpp" #include "CommandFrames/AVR8Generic/Detach.hpp" #include "CommandFrames/AVR8Generic/Stop.hpp" #include "CommandFrames/AVR8Generic/Step.hpp" #include "CommandFrames/AVR8Generic/Run.hpp" #include "CommandFrames/AVR8Generic/RunTo.hpp" #include "CommandFrames/AVR8Generic/GetDeviceId.hpp" #include "CommandFrames/AVR8Generic/Reset.hpp" #include "CommandFrames/AVR8Generic/ReadMemory.hpp" #include "CommandFrames/AVR8Generic/WriteMemory.hpp" #include "CommandFrames/AVR8Generic/GetProgramCounter.hpp" #include "CommandFrames/AVR8Generic/SetProgramCounter.hpp" #include "CommandFrames/AVR8Generic/DisableDebugWire.hpp" #include "CommandFrames/AVR8Generic/SetSoftwareBreakpoints.hpp" #include "CommandFrames/AVR8Generic/ClearAllSoftwareBreakpoints.hpp" #include "CommandFrames/AVR8Generic/ClearSoftwareBreakpoints.hpp" #include "CommandFrames/AVR8Generic/SetHardwareBreakpoint.hpp" #include "CommandFrames/AVR8Generic/ClearHardwareBreakpoint.hpp" #include "CommandFrames/AVR8Generic/EnterProgrammingMode.hpp" #include "CommandFrames/AVR8Generic/LeaveProgrammingMode.hpp" #include "CommandFrames/AVR8Generic/EraseMemory.hpp" #include "Parameters/AVR8Generic/DebugWireJtagParameters.hpp" #include "Parameters/AVR8Generic/PdiParameters.hpp" #include "Parameters/AVR8Generic/UpdiParameters.hpp" // AVR events #include "Events/AVR8Generic/BreakEvent.hpp" namespace DebugToolDrivers::Microchip::Protocols::Edbg::Avr { using namespace Targets::Microchip::Avr8; using namespace Exceptions; using CommandFrames::Avr8Generic::Stop; using CommandFrames::Avr8Generic::Run; using CommandFrames::Avr8Generic::RunTo; using CommandFrames::Avr8Generic::Step; using CommandFrames::Avr8Generic::Reset; using CommandFrames::Avr8Generic::GetProgramCounter; using CommandFrames::Avr8Generic::SetProgramCounter; using CommandFrames::Avr8Generic::GetDeviceId; using CommandFrames::Avr8Generic::SetSoftwareBreakpoints; using CommandFrames::Avr8Generic::ClearSoftwareBreakpoints; using CommandFrames::Avr8Generic::ClearAllSoftwareBreakpoints; using CommandFrames::Avr8Generic::SetHardwareBreakpoint; using CommandFrames::Avr8Generic::ClearHardwareBreakpoint; using CommandFrames::Avr8Generic::ReadMemory; using CommandFrames::Avr8Generic::EnterProgrammingMode; using CommandFrames::Avr8Generic::LeaveProgrammingMode; using CommandFrames::Avr8Generic::SetParameter; using CommandFrames::Avr8Generic::GetParameter; using CommandFrames::Avr8Generic::ActivatePhysical; using CommandFrames::Avr8Generic::DeactivatePhysical; using CommandFrames::Avr8Generic::Attach; using CommandFrames::Avr8Generic::Detach; using CommandFrames::Avr8Generic::ReadMemory; using CommandFrames::Avr8Generic::WriteMemory; using CommandFrames::Avr8Generic::EraseMemory; using CommandFrames::Avr8Generic::DisableDebugWire; using Targets::TargetAddressSpaceDescriptor; using Targets::TargetMemorySegmentType; using Targets::TargetExecutionState; using Targets::TargetPhysicalInterface; using Targets::TargetMemoryBuffer; using Targets::TargetMemoryAddress; using Targets::TargetMemorySize; using Targets::TargetRegisterDescriptor; using Targets::TargetRegisterDescriptors; using Targets::TargetRegisterDescriptorAndValuePairs; EdbgAvr8Interface::EdbgAvr8Interface( EdbgInterface* edbgInterface, const Targets::Microchip::Avr8::TargetDescriptionFile& targetDescriptionFile, const Targets::Microchip::Avr8::Avr8TargetConfig& targetConfig ) : edbgInterface(edbgInterface) , session(EdbgAvr8Session(targetDescriptionFile, targetConfig)) {} void EdbgAvr8Interface::init() { if (this->session.configVariant == Avr8ConfigVariant::XMEGA) { // Default PDI clock to 4MHz // TODO: Make this adjustable via a target config parameter this->setParameter(Avr8EdbgParameters::PDI_CLOCK_SPEED, std::uint16_t{4000}); } if (this->session.configVariant == Avr8ConfigVariant::UPDI) { // Default UPDI clock to 1.8MHz this->setParameter(Avr8EdbgParameters::PDI_CLOCK_SPEED, std::uint16_t{1800}); this->setParameter(Avr8EdbgParameters::ENABLE_HIGH_VOLTAGE_UPDI, std::uint8_t{0}); } if (this->session.configVariant == Avr8ConfigVariant::MEGAJTAG) { // Default clock value for mega debugging is 200KHz // TODO: Make this adjustable via a target config parameter this->setParameter(Avr8EdbgParameters::MEGA_DEBUG_CLOCK, std::uint16_t{200}); this->setParameter(Avr8EdbgParameters::JTAG_DAISY_CHAIN_SETTINGS, std::uint32_t{0}); } this->setParameter( Avr8EdbgParameters::CONFIG_VARIANT, static_cast(this->session.configVariant) ); this->setParameter( Avr8EdbgParameters::CONFIG_FUNCTION, static_cast(Avr8ConfigFunction::DEBUGGING) ); static const auto avr8PhysicalInterfaceMapping = std::map{ {TargetPhysicalInterface::DEBUG_WIRE, Avr8PhysicalInterface::DEBUG_WIRE}, {TargetPhysicalInterface::PDI, Avr8PhysicalInterface::PDI}, {TargetPhysicalInterface::JTAG, Avr8PhysicalInterface::JTAG}, {TargetPhysicalInterface::UPDI, Avr8PhysicalInterface::PDI_1W}, }; this->setParameter( Avr8EdbgParameters::PHYSICAL_INTERFACE, static_cast(avr8PhysicalInterfaceMapping.at(this->session.targetConfig.physicalInterface)) ); this->setTargetParameters(); } void EdbgAvr8Interface::stop() { const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(Stop{}); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Stop target command failed", responseFrame}; } if (this->getExecutionState() == TargetExecutionState::RUNNING) { this->waitForStoppedEvent(); } } void EdbgAvr8Interface::run() { this->clearEvents(); const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(Run{}); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Run command failed", responseFrame}; } this->cachedExecutionState = TargetExecutionState::RUNNING; } void EdbgAvr8Interface::runTo(TargetMemoryAddress address) { this->clearEvents(); const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(RunTo{address}); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Run-to command failed", responseFrame}; } this->cachedExecutionState = TargetExecutionState::RUNNING; } void EdbgAvr8Interface::step() { const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(Step{}); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Step target command failed", responseFrame}; } this->cachedExecutionState = TargetExecutionState::STEPPING; } void EdbgAvr8Interface::reset() { const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(Reset{}); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Reset target command failed", responseFrame}; } try { // Wait for stopped event this->waitForStoppedEvent(); } catch (const Exception& exception) { throw Exception{"Failed to reset AVR8 target - missing stopped event."}; } /* * Issuing another command immediately after reset sometimes results in an 'illegal target state' error from * the EDBG debug tool. Even though we waited for the break event. * * All we can really do here is introduce a small delay, to ensure that we're not issuing commands too quickly * after reset. */ std::this_thread::sleep_for(std::chrono::milliseconds{250}); } void EdbgAvr8Interface::activate() { if (!this->physicalInterfaceActivated) { try { this->activatePhysical(); } catch (const Avr8CommandFailure& activationException) { if ( this->session.targetConfig.physicalInterface == TargetPhysicalInterface::DEBUG_WIRE && ( activationException.code == Avr8CommandFailureCode::DEBUGWIRE_PHYSICAL_ERROR || activationException.code == Avr8CommandFailureCode::FAILED_TO_ENABLE_OCD ) ) { throw DebugWirePhysicalInterfaceError{ "Failed to activate the debugWIRE physical interface - check target connection. " "If the target was recently programmed via ISP, try cycling the target power. See " + Services::PathService::homeDomainName() + "/docs/debugging-avr-debugwire for more " "information." }; } throw activationException; } } if (!this->targetAttached) { this->attach(); } } void EdbgAvr8Interface::deactivate() { if (this->targetAttached) { if ( this->session.targetConfig.physicalInterface == TargetPhysicalInterface::DEBUG_WIRE && this->session.targetConfig.disableDebugWireOnDeactivate ) { try { this->disableDebugWire(); Logger::warning( "Successfully disabled debugWIRE on the AVR8 target - this is only temporary - " "the debugWIRE module has lost control of the RESET pin. Bloom may no longer be able to " "interface with the target until the next power cycle." ); } catch (const Exception& exception) { // Failing to disable debugWIRE should never prevent us from proceeding with target deactivation. Logger::error(exception.getMessage()); } } this->detach(); } if (this->physicalInterfaceActivated) { this->deactivatePhysical(); } } Targets::TargetRegisterAccess EdbgAvr8Interface::getRegisterAccess( const TargetRegisterDescriptor& registerDescriptor, const TargetAddressSpaceDescriptor& addressSpaceDescriptor ) { /* * Currently, this implementation of the EDBG AVR8 debug interface can only access registers in the data and * register file address space (during a debug session). * * There are some other memory types we can use to access some other registers during a debug session, but * these are yet to be implemented. */ const auto access = addressSpaceDescriptor.key == this->session.dataAddressSpace.key || addressSpaceDescriptor.key == this->session.registerFileAddressSpace.key; return {access, access}; } TargetMemoryAddress EdbgAvr8Interface::getProgramCounter() { if (this->cachedExecutionState != TargetExecutionState::STOPPED) { this->stop(); } const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(GetProgramCounter{}); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Get program counter command failed", responseFrame}; } return responseFrame.extractProgramCounter(); } void EdbgAvr8Interface::setProgramCounter(TargetMemoryAddress programCounter) { if (this->cachedExecutionState != TargetExecutionState::STOPPED) { /* * TODO: Review - do we need to do this? Why? The TC shouldn't attempt to set the program counter if the * target is running. Add a comment */ this->stop(); } /* * The program counter will be given in byte address form, but the EDBG tool will be expecting it in word * address (16-bit) form. This is why we divide it by 2. */ const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame( SetProgramCounter{programCounter / 2} ); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Set program counter command failed", responseFrame}; } } TargetSignature EdbgAvr8Interface::getDeviceId() { if (this->session.configVariant == Avr8ConfigVariant::UPDI) { /* * In UPDI sessions, the 'Get ID' command behaves in an odd manner, where it doesn't actually return the * target signature, but a fixed four byte string reading: 'A', 'V', 'R' and ' ' (white space). * * So it appears we cannot use that command for UPDI sessions. For this reason, we will just read the * signature from memory via the signature memory segment. * * TODO: We're assuming the signature memory segment will always reside in the `data` address space, for * UPDI targets. Review. */ const auto signatureMemory = this->readMemory( Avr8MemoryType::SRAM, this->session.signatureMemorySegment.startAddress, 3 ); if (signatureMemory.size() != 3) { throw Exception{"Failed to read AVR8 signature from target - unexpected response size"}; } return {signatureMemory[0], signatureMemory[1], signatureMemory[2]}; } const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(GetDeviceId{}); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Get device ID command failed", responseFrame}; } return responseFrame.extractSignature(this->session.targetConfig.physicalInterface); } void EdbgAvr8Interface::setSoftwareBreakpoint(TargetMemoryAddress address) { const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame( SetSoftwareBreakpoints{{address}} ); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Set software breakpoint command failed", responseFrame}; } } void EdbgAvr8Interface::clearSoftwareBreakpoint(TargetMemoryAddress address) { const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame( ClearSoftwareBreakpoints{{address}} ); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Clear software breakpoint command failed", responseFrame}; } } void EdbgAvr8Interface::setHardwareBreakpoint(TargetMemoryAddress address) { static const auto getAvailableBreakpointNumbers = [this] () { auto breakpointNumbers = std::set{1, 2, 3}; for (const auto& [address, allocatedNumber] : this->hardwareBreakpointNumbersByAddress) { breakpointNumbers.erase(allocatedNumber); } return breakpointNumbers; }; const auto availableBreakpointNumbers = getAvailableBreakpointNumbers(); if (availableBreakpointNumbers.empty()) { throw Exception{"Maximum hardware breakpoints have been allocated"}; } const auto breakpointNumber = *(availableBreakpointNumbers.begin()); const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame( SetHardwareBreakpoint{address, breakpointNumber} ); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Set hardware breakpoint command failed", responseFrame}; } this->hardwareBreakpointNumbersByAddress.emplace(address, breakpointNumber); } void EdbgAvr8Interface::clearHardwareBreakpoint(TargetMemoryAddress address) { const auto breakpointNumberIt = this->hardwareBreakpointNumbersByAddress.find(address); if (breakpointNumberIt == this->hardwareBreakpointNumbersByAddress.end()) { Logger::error("No hardware breakpoint at byte address 0x" + Services::StringService::toHex(address)); return; } const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame( ClearHardwareBreakpoint{breakpointNumberIt->second} ); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Clear hardware breakpoint command failed", responseFrame}; } this->hardwareBreakpointNumbersByAddress.erase(address); } void EdbgAvr8Interface::clearAllBreakpoints() { const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame( ClearAllSoftwareBreakpoints{} ); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Clear all software breakpoints command failed", responseFrame}; } // Clear all hardware breakpoints while (!this->hardwareBreakpointNumbersByAddress.empty()) { this->clearHardwareBreakpoint(this->hardwareBreakpointNumbersByAddress.begin()->first); } } TargetRegisterDescriptorAndValuePairs EdbgAvr8Interface::readRegisters( const Targets::TargetRegisterDescriptors& descriptors ) { using Targets::TargetRegisterType; using Targets::TargetMemoryAddressRange; /* * This function needs to be fast. Insight eagerly requests the values of all known registers that it can * present to the user. It does this on numerous occasions (target stopped, user clicked refresh, etc.). This * means we will be frequently loading over 100 register values in a single instance. * * For the above reason, we do not read each register value individually. That would take far too long if we * have over 100 registers to read. Instead, we calculate the address ranges for each memory type we'll be * reading from, and then perform a single read operation for each memory type. */ auto output = TargetRegisterDescriptorAndValuePairs{}; /* * AVR registers can be accessed via one of two memory types, depending on the register type and config * variant. * * For debugWIRE and JTAG config variants, all registers (in the data address space) can be accessed via the * SRAM memory type. This includes general purpose registers. * * For PDI and UPDI config variants, all registers *EXCEPT* general purpose registers can be accessed via the * SRAM memory type. General purpose registers can only be accessed via the REGISTER_FILE memory type. */ auto sramAddressRange = std::optional{}; auto registerFileAddressRange = std::optional{}; auto sramRegisterDescriptors = TargetRegisterDescriptors{}; auto registerFileRegisterDescriptors = TargetRegisterDescriptors{}; for (const auto& descriptor : descriptors) { const auto regMemoryType = this->getRegisterMemoryType(*descriptor); const auto endAddress = descriptor->startAddress + (descriptor->size - 1); if (regMemoryType == Avr8MemoryType::REGISTER_FILE) { // This register can only be accessed via the REGISTER_FILE memory type if (registerFileAddressRange.has_value()) { if (descriptor->startAddress < registerFileAddressRange->startAddress) { registerFileAddressRange->startAddress = descriptor->startAddress; } if (endAddress > registerFileAddressRange->endAddress) { registerFileAddressRange->endAddress = endAddress; } } else { registerFileAddressRange = TargetMemoryAddressRange( descriptor->startAddress, descriptor->startAddress + (descriptor->size - 1) ); } registerFileRegisterDescriptors.push_back(descriptor); } if (regMemoryType == Avr8MemoryType::SRAM) { // This register can be accessed via the SRAM memory type if (sramAddressRange.has_value()) { if (descriptor->startAddress < sramAddressRange->startAddress) { sramAddressRange->startAddress = descriptor->startAddress; } if (endAddress > sramAddressRange->endAddress) { sramAddressRange->endAddress = endAddress; } } else { sramAddressRange = TargetMemoryAddressRange( descriptor->startAddress, descriptor->startAddress + (descriptor->size - 1) ); } sramRegisterDescriptors.push_back(descriptor); } } if (sramAddressRange.has_value()) { const auto readSize = (sramAddressRange->endAddress - sramAddressRange->startAddress) + 1; /* * When reading from SRAM, we must avoid any attempts to access the OCD data register (OCDDR), as the * debug tool will reject the command and respond with a 0x36 error code (invalid address error). * * For this reason, we specify the OCDDR address as an excluded address. This will mean * the EdbgAvr8Interface::readMemory() function will avoid reading from that particular address. */ auto excludedAddresses = std::set{}; if (this->session.ocdDataRegister.has_value()) { excludedAddresses.insert(*(this->session.ocdDataRegister) + this->session.ioMemorySegment.startAddress); } const auto flatMemoryData = this->readMemory( Avr8MemoryType::SRAM, sramAddressRange->startAddress, readSize, excludedAddresses ); if (flatMemoryData.size() != readSize) { throw Exception{ "Failed to read memory via SRAM memory type - address range: " + std::to_string(sramAddressRange->startAddress) + " - " + std::to_string(sramAddressRange->endAddress) + ". Expected " + std::to_string(readSize) + " bytes, got " + std::to_string(flatMemoryData.size()) }; } for (const auto& descriptor : sramRegisterDescriptors) { /* * Multibyte AVR8 registers are stored in LSB form. * * We use reverse iterators here to extract the data in MSB form. */ const auto bufferStartIt = flatMemoryData.rend() - (descriptor->startAddress - sramAddressRange->startAddress) - descriptor->size; output.emplace_back( *descriptor, TargetMemoryBuffer{bufferStartIt, bufferStartIt + descriptor->size} ); } } if (registerFileAddressRange.has_value()) { const auto readSize = (registerFileAddressRange->endAddress - registerFileAddressRange->startAddress) + 1; const auto flatMemoryData = this->readMemory( Avr8MemoryType::REGISTER_FILE, registerFileAddressRange->startAddress, readSize, {} ); if (flatMemoryData.size() != readSize) { throw Exception{ "Failed to read memory via REGISTER_FILE memory type - address range: " + std::to_string(registerFileAddressRange->startAddress) + " - " + std::to_string(registerFileAddressRange->endAddress) + ". Expected " + std::to_string(readSize) + " bytes, got " + std::to_string(flatMemoryData.size()) }; } for (const auto& descriptor : registerFileRegisterDescriptors) { const auto bufferStartIt = flatMemoryData.rend() - (descriptor->startAddress - registerFileAddressRange->startAddress) - descriptor->size; output.emplace_back( *descriptor, TargetMemoryBuffer{bufferStartIt, bufferStartIt + descriptor->size} ); } } return output; } void EdbgAvr8Interface::writeRegisters( const TargetRegisterDescriptorAndValuePairs& registers ) { using Targets::TargetRegisterType; for (const auto& [descriptor, value] : registers) { auto valueCopy = value; if (valueCopy.empty()) { throw Exception{"Cannot write empty register value"}; } if (valueCopy.size() > descriptor.size) { throw Exception{"Register value exceeds size specified by register descriptor."}; } if (valueCopy.size() < descriptor.size) { // Fill the missing most-significant bytes with 0x00 valueCopy.insert(valueCopy.begin(), descriptor.size - valueCopy.size(), 0x00); } if (valueCopy.size() > 1) { // AVR8 registers are stored in LSB std::reverse(valueCopy.begin(), valueCopy.end()); } // TODO: This can be inefficient when updating many registers, maybe do something a little smarter here. this->writeMemory(this->getRegisterMemoryType(descriptor), descriptor.startAddress, valueCopy); } } TargetMemoryBuffer EdbgAvr8Interface::readMemory( const Targets::TargetAddressSpaceDescriptor& addressSpaceDescriptor, const Targets::TargetMemorySegmentDescriptor& memorySegmentDescriptor, TargetMemoryAddress startAddress, TargetMemorySize bytes, const std::set& excludedAddressRanges ) { if (this->programmingModeEnabled && memorySegmentDescriptor.type == TargetMemorySegmentType::RAM) { throw Exception{"Cannot access RAM when programming mode is enabled"}; } /* * The internal readMemory() function accepts excluded addresses in the form of a set of addresses, as * opposed to a set of address ranges. * * We will perform the conversion here. */ auto excludedAddresses = std::set{}; const auto endAddress = startAddress + bytes - 1; for (const auto& addressRange : excludedAddressRanges) { if (addressRange.startAddress > endAddress) { // This address range is outside the range from which we will be reading continue; } for (auto i = addressRange.startAddress; i <= addressRange.endAddress; ++i) { excludedAddresses.insert(i); } } if (memorySegmentDescriptor.type == TargetMemorySegmentType::FLASH) { if (this->session.configVariant == Avr8ConfigVariant::MEGAJTAG) { return this->readMemory( this->programmingModeEnabled ? Avr8MemoryType::FLASH_PAGE : Avr8MemoryType::SPM, startAddress, bytes, excludedAddresses ); } if (this->session.configVariant == Avr8ConfigVariant::XMEGA) { const auto bootSectionStartAddress = this->session.programBootSection.value().get().startAddress; if (startAddress >= bootSectionStartAddress) { /* * When using the BOOT_FLASH memory type, the address should be relative to the start of the * boot section. */ return this->readMemory( Avr8MemoryType::BOOT_FLASH, startAddress - bootSectionStartAddress, bytes, excludedAddresses ); } /* * When using the APPL_FLASH memory type, the address should be relative to the start of the * application section. */ return this->readMemory( Avr8MemoryType::APPL_FLASH, startAddress - this->session.programAppSection.value().get().startAddress, bytes, excludedAddresses ); } return this->readMemory(Avr8MemoryType::FLASH_PAGE, startAddress, bytes, excludedAddresses); } if (memorySegmentDescriptor.type == TargetMemorySegmentType::EEPROM) { if (this->session.configVariant == Avr8ConfigVariant::MEGAJTAG) { return this->readMemory( this->programmingModeEnabled ? Avr8MemoryType::EEPROM_PAGE : Avr8MemoryType::EEPROM, startAddress, bytes, excludedAddresses ); } if (this->session.configVariant == Avr8ConfigVariant::XMEGA) { // EEPROM addresses should be in relative form, for XMEGA (PDI) targets return this->readMemory( Avr8MemoryType::EEPROM, startAddress - this->session.eepromMemorySegment.startAddress, bytes, excludedAddresses ); } return this->readMemory(Avr8MemoryType::EEPROM, startAddress, bytes, excludedAddresses); } if (memorySegmentDescriptor.type == TargetMemorySegmentType::FUSES) { return this->readMemory(Avr8MemoryType::FUSES, startAddress, bytes, excludedAddresses); } return this->readMemory(Avr8MemoryType::SRAM, startAddress, bytes, excludedAddresses); } void EdbgAvr8Interface::writeMemory( const Targets::TargetAddressSpaceDescriptor& addressSpaceDescriptor, const Targets::TargetMemorySegmentDescriptor& memorySegmentDescriptor, TargetMemoryAddress startAddress, const TargetMemoryBuffer& buffer ) { if (memorySegmentDescriptor.type == TargetMemorySegmentType::FLASH) { if (this->session.configVariant == Avr8ConfigVariant::XMEGA) { const auto bootSectionStartAddress = this->session.programBootSection.value().get().startAddress; if (startAddress >= bootSectionStartAddress) { /* * When using the BOOT_FLASH memory type, the address should be relative to the start of the * boot section. */ return this->writeMemory( Avr8MemoryType::BOOT_FLASH, startAddress - bootSectionStartAddress, buffer ); } else { /* * When using the APPL_FLASH memory type, the address should be relative to the start of the * application section. */ return this->writeMemory( Avr8MemoryType::APPL_FLASH, startAddress - this->session.programAppSection.value().get().startAddress, buffer ); } return this->writeMemory(Avr8MemoryType::FLASH_PAGE, startAddress, buffer); } return this->writeMemory(Avr8MemoryType::FLASH_PAGE, startAddress, buffer); } if (memorySegmentDescriptor.type == TargetMemorySegmentType::EEPROM) { if (this->session.configVariant == Avr8ConfigVariant::MEGAJTAG) { return this->writeMemory( this->programmingModeEnabled ? Avr8MemoryType::EEPROM_PAGE : Avr8MemoryType::EEPROM, startAddress, buffer ); } if (this->session.configVariant == Avr8ConfigVariant::XMEGA) { // EEPROM addresses should be in relative form, for XMEGA (PDI) targets return this->writeMemory( Avr8MemoryType::EEPROM_ATOMIC, startAddress - this->session.eepromMemorySegment.startAddress, buffer ); } if (this->session.configVariant == Avr8ConfigVariant::UPDI) { return this->writeMemory(Avr8MemoryType::EEPROM_ATOMIC, startAddress, buffer); } return this->writeMemory(Avr8MemoryType::EEPROM, startAddress, buffer); } if (memorySegmentDescriptor.type == TargetMemorySegmentType::FUSES) { return this->writeMemory(Avr8MemoryType::FUSES, startAddress, buffer); } return this->writeMemory(Avr8MemoryType::SRAM, startAddress, buffer); } void EdbgAvr8Interface::eraseProgramMemory(std::optional section) { // The EDBG erase command with a specified "mode" parameter is only supported by XMEGA targets if (this->session.configVariant != Avr8ConfigVariant::XMEGA) { throw Exception{"debugWIRE, JTAG and UPDI targets do not support EDBG program memory erase command"}; } if (!section.has_value() || *section == ProgramMemorySection::BOOT) { const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame( EraseMemory{Avr8EraseMemoryMode::BOOT_SECTION} ); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 erase memory command (for BOOT section) failed", responseFrame}; } } if (!section.has_value() || *section == ProgramMemorySection::APPLICATION) { const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame( EraseMemory{Avr8EraseMemoryMode::APPLICATION_SECTION} ); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 erase memory command (for APPLICATION section) failed", responseFrame}; } } } void EdbgAvr8Interface::eraseChip() { const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame( EraseMemory{Avr8EraseMemoryMode::CHIP} ); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 erase memory command failed", responseFrame}; } } TargetExecutionState EdbgAvr8Interface::getExecutionState() { /* * We are not informed when a target goes from a stopped state to a running state, so there is no need * to query the tool when we already know the target has stopped. * * This means we have to rely on the assumption that the target cannot enter a running state without * our instruction. */ if (this->cachedExecutionState != TargetExecutionState::STOPPED) { this->refreshTargetState(); } return this->cachedExecutionState; } void EdbgAvr8Interface::enableProgrammingMode() { if (this->programmingModeEnabled) { return; } const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame( EnterProgrammingMode{} ); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"Failed to enter programming mode on EDBG debug tool", responseFrame}; } this->programmingModeEnabled = true; this->hardwareBreakpointNumbersByAddress.clear(); } void EdbgAvr8Interface::disableProgrammingMode() { if (!this->programmingModeEnabled) { return; } const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame( LeaveProgrammingMode{} ); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"Failed to leave programming mode on EDBG debug tool", responseFrame}; } this->programmingModeEnabled = false; if (this->session.configVariant == Avr8ConfigVariant::MEGAJTAG && this->reactivateJtagTargetPostProgrammingMode) { this->deactivatePhysical(); this->targetAttached = false; this->activate(); } } void EdbgAvr8Interface::setTargetParameters() { switch (this->session.configVariant) { case Avr8ConfigVariant::DEBUG_WIRE: case Avr8ConfigVariant::MEGAJTAG: { this->setDebugWireAndJtagParameters(); break; } case Avr8ConfigVariant::XMEGA: { this->setPdiParameters(); break; } case Avr8ConfigVariant::UPDI: { this->setUpdiParameters(); break; } default: { break; } } } void EdbgAvr8Interface::setParameter(const Avr8EdbgParameter& parameter, const std::vector& value) { using Services::StringService; const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame( SetParameter{parameter, value} ); Logger::debug( "Setting AVR8 EDBG parameter (context: 0x" + StringService::toHex(parameter.context) + ", id: 0x" + StringService::toHex(parameter.id) + ", value: 0x" + StringService::toHex(value) + ")" ); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"Failed to set parameter on device!", responseFrame}; } } std::vector EdbgAvr8Interface::getParameter(const Avr8EdbgParameter& parameter, std::uint8_t size) { const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame( GetParameter{parameter, size} ); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"Failed to get parameter from device!", responseFrame}; } return responseFrame.getPayloadData(); } void EdbgAvr8Interface::setDebugWireAndJtagParameters() { const auto parameters = Parameters::Avr8Generic::DebugWireJtagParameters{this->session.targetDescriptionFile}; Logger::debug("Setting FLASH_PAGE_SIZE AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_FLASH_PAGE_SIZE, parameters.flashPageSize); Logger::debug("Setting FLASH_SIZE AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_FLASH_SIZE, parameters.flashSize); Logger::debug("Setting FLASH_BASE AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_FLASH_BASE, parameters.flashStartWordAddress); if (parameters.bootSectionStartWordAddress.has_value()) { Logger::debug("Setting BOOT_START_ADDR AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_BOOT_START_ADDR, *(parameters.bootSectionStartWordAddress)); } Logger::debug("Setting SRAM_START AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_SRAM_START, parameters.ramStartAddress); Logger::debug("Setting EEPROM_SIZE AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_EEPROM_SIZE, parameters.eepromSize); Logger::debug("Setting EEPROM_PAGE_SIZE AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_EEPROM_PAGE_SIZE, parameters.eepromPageSize); Logger::debug("Setting OCD_REVISION AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_OCD_REVISION, parameters.ocdRevision); Logger::debug("Setting OCD_DATA_REGISTER AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_OCD_DATA_REGISTER, parameters.ocdDataRegisterAddress); Logger::debug("Setting EEARL_ADDR AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_EEARL_ADDR, parameters.eearAddressLow); Logger::debug("Setting EEARH_ADDR AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_EEARH_ADDR, parameters.eearAddressHigh); Logger::debug("Setting EECR_ADDR AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_EECR_ADDR, parameters.eecrAddress); Logger::debug("Setting EEDR_ADDR AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_EEDR_ADDR, parameters.eedrAddress); Logger::debug("Setting SPMCR_REGISTER AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_SPMCR_REGISTER, parameters.spmcrAddress); Logger::debug("Setting OSCCAL_ADDR AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_OSCCAL_ADDR, parameters.osccalAddress); } void EdbgAvr8Interface::setPdiParameters() { const auto parameters = Parameters::Avr8Generic::PdiParameters{this->session.targetDescriptionFile}; Logger::debug("Setting APPL_BASE_ADDR AVR8 parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_APPL_BASE_ADDR, parameters.appSectionPdiOffset); Logger::debug("Setting BOOT_BASE_ADDR AVR8 parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_BOOT_BASE_ADDR, parameters.bootSectionPdiOffset); Logger::debug("Setting EEPROM_BASE_ADDR AVR8 parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_EEPROM_BASE_ADDR, parameters.eepromPdiOffset); Logger::debug("Setting FUSE_BASE_ADDR AVR8 parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_FUSE_BASE_ADDR, parameters.fuseRegistersPdiOffset); Logger::debug("Setting LOCKBIT_BASE_ADDR AVR8 parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_LOCKBIT_BASE_ADDR, parameters.lockRegistersPdiOffset); Logger::debug("Setting USER_SIGN_BASE_ADDR AVR8 parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_USER_SIGN_BASE_ADDR, parameters.userSignaturesPdiOffset); Logger::debug("Setting PROD_SIGN_BASE_ADDR AVR8 parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_PROD_SIGN_BASE_ADDR, parameters.prodSignaturesPdiOffset); Logger::debug("Setting DATA_BASE_ADDR AVR8 parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_DATA_BASE_ADDR, parameters.ramPdiOffset); Logger::debug("Setting APPLICATION_BYTES AVR8 parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_APPLICATION_BYTES, parameters.appSectionSize); Logger::debug("Setting BOOT_BYTES AVR8 parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_BOOT_BYTES, parameters.bootSectionSize); Logger::debug("Setting FLASH_PAGE_BYTES AVR8 parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_FLASH_PAGE_BYTES, parameters.flashPageSize); Logger::debug("Setting EEPROM_SIZE AVR8 parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_EEPROM_SIZE, parameters.eepromSize); Logger::debug("Setting EEPROM_PAGE_SIZE AVR8 parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_EEPROM_PAGE_SIZE, parameters.eepromPageSize); Logger::debug("Setting NVM_BASE AVR8 parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_NVM_BASE, parameters.nvmModuleBaseAddress); Logger::debug("Setting SIGNATURE_OFFSET AVR8 parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_XMEGA_SIGNATURE_OFFSET, parameters.signaturesPdiOffset); } void EdbgAvr8Interface::setUpdiParameters() { const auto parameters = Parameters::Avr8Generic::UpdiParameters{this->session.targetDescriptionFile}; /* * The program memory base address field for UPDI sessions (DEVICE_UPDI_PROGMEM_BASE_ADDR) seems to be * limited to two bytes in size, as opposed to the four byte size for the debugWIRE, JTAG and PDI * equivalent fields. This is why, I suspect, another field was required for the most significant byte of * the program memory base address (DEVICE_UPDI_PROGMEM_BASE_ADDR_MSB). * * The additional DEVICE_UPDI_PROGMEM_BASE_ADDR_MSB field is only one byte in size, so it brings the total * capacity for the program memory base address to three bytes. Because of this, we ensure that all TDFs, * for targets that support UPDI, specify an address that does not exceed the maximum value of a 24 bit * unsigned integer. This is done in our TDF validation script (see src/Targets/TargetDescription/README.md * for more). */ Logger::debug("Setting UPDI_PROGMEM_BASE_ADDR AVR8 device parameter"); this->setParameter( Avr8EdbgParameters::DEVICE_UPDI_PROGMEM_BASE_ADDR, static_cast(parameters.programMemoryStartAddress) ); Logger::debug("Setting UPDI_PROGMEM_BASE_ADDR_MSB AVR8 device parameter"); this->setParameter( Avr8EdbgParameters::DEVICE_UPDI_PROGMEM_BASE_ADDR_MSB, static_cast(parameters.programMemoryStartAddress >> 16) ); Logger::debug("Setting UPDI_24_BIT_ADDRESSING_ENABLE AVR8 device parameter"); this->setParameter( Avr8EdbgParameters::DEVICE_UPDI_24_BIT_ADDRESSING_ENABLE, parameters.programMemoryStartAddress > 0xFFFF ? std::uint8_t{1} : std::uint8_t{0} ); /* * See the comment above regarding capacity limitations of the DEVICE_UPDI_PROGMEM_BASE_ADDR field. * * The same applies here, for the flash page size field (DEVICE_UPDI_FLASH_PAGE_SIZE). */ Logger::debug("Setting UPDI_FLASH_PAGE_SIZE AVR8 device parameter"); this->setParameter( Avr8EdbgParameters::DEVICE_UPDI_FLASH_PAGE_SIZE, static_cast(parameters.flashPageSize) ); Logger::debug("Setting UPDI_FLASH_PAGE_SIZE_MSB AVR8 device parameter"); this->setParameter( Avr8EdbgParameters::DEVICE_UPDI_FLASH_PAGE_SIZE_MSB, static_cast(parameters.flashPageSize >> 8) ); Logger::debug("Setting UPDI_EEPROM_PAGE_SIZE AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_EEPROM_PAGE_SIZE, parameters.eepromPageSize); Logger::debug("Setting UPDI_NVMCTRL_ADDR AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_NVMCTRL_ADDR, parameters.nvmModuleBaseAddress); Logger::debug("Setting UPDI_OCD_ADDR AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_OCD_ADDR, parameters.ocdModuleAddress); Logger::debug("Setting UPDI_FLASH_SIZE AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_FLASH_SIZE, parameters.flashSize); Logger::debug("Setting UPDI_EEPROM_SIZE AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_EEPROM_SIZE, parameters.eepromSize); Logger::debug("Setting UPDI_EEPROM_BASE_ADDR AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_EEPROM_BASE_ADDR, parameters.eepromStartAddress); Logger::debug("Setting UPDI_SIG_BASE_ADDR AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_SIG_BASE_ADDR, parameters.signatureSegmentStartAddress); Logger::debug("Setting UPDI_FUSE_BASE_ADDR AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_FUSE_BASE_ADDR, parameters.fuseSegmentStartAddress); Logger::debug("Setting UPDI_FUSE_SIZE AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_FUSE_SIZE, parameters.fuseSegmentSize); Logger::debug("Setting UPDI_LOCK_BASE_ADDR AVR8 device parameter"); this->setParameter(Avr8EdbgParameters::DEVICE_UPDI_LOCK_BASE_ADDR, parameters.lockbitSegmentStartAddress); } void EdbgAvr8Interface::activatePhysical(bool applyExternalReset) { const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame( ActivatePhysical{applyExternalReset} ); if (responseFrame.id == Avr8ResponseId::FAILED) { if (!applyExternalReset) { // Try again with external reset applied Logger::debug( "Failed to activate physical interface on AVR8 target - retrying with external reset applied." ); return this->activatePhysical(true); } throw Avr8CommandFailure{"AVR8 Activate physical interface command failed", responseFrame}; } this->physicalInterfaceActivated = true; } void EdbgAvr8Interface::deactivatePhysical() { const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame( DeactivatePhysical{} ); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Deactivate physical interface command failed", responseFrame}; } this->physicalInterfaceActivated = false; } void EdbgAvr8Interface::attach() { /* * When attaching an ATmega JTAG target, we must not set the breakAfterAttach flag, as this results in a * timeout. * * However, in this case the 'attach' command seems to _sometimes_ halt the target anyway, regardless of the * value of the breakAfterAttach flag. So we still expect a stop event to be received shortly after issuing * the 'attach' command. */ const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame( Attach{this->session.configVariant != Avr8ConfigVariant::MEGAJTAG} ); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Attach command failed", responseFrame}; } this->targetAttached = true; try { // Wait for stopped event this->waitForStoppedEvent(); } catch (const Exception& exception) { Logger::warning("Execution on AVR8 target could not be halted post attach - " + exception.getMessage()); } } void EdbgAvr8Interface::detach() { const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(Detach{}); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Detach command failed", responseFrame}; } this->targetAttached = false; } std::unique_ptr EdbgAvr8Interface::getAvrEvent() { auto event = this->edbgInterface->requestAvrEvent(); if (!event.has_value()) { return nullptr; } switch (event->eventId.value()) { case AvrEventId::AVR8_BREAK_EVENT: { // Break event return std::make_unique(event.value()); } default: { /* * TODO: This isn't very nice as we're performing an unnecessary copy. Maybe requestAvrEvent should * return a unique_ptr instead? */ return std::make_unique(event.value()); } } } void EdbgAvr8Interface::clearEvents() { while (this->getAvrEvent() != nullptr) {} } Avr8MemoryType EdbgAvr8Interface::getRegisterMemoryType(const TargetRegisterDescriptor& descriptor) { return ( descriptor.type == Targets::TargetRegisterType::GENERAL_PURPOSE_REGISTER && ( this->session.configVariant == Avr8ConfigVariant::XMEGA || this->session.configVariant == Avr8ConfigVariant::UPDI ) ) ? Avr8MemoryType::REGISTER_FILE : Avr8MemoryType::SRAM; } bool EdbgAvr8Interface::alignmentRequired(Avr8MemoryType memoryType) { return memoryType == Avr8MemoryType::FLASH_PAGE || memoryType == Avr8MemoryType::SPM || memoryType == Avr8MemoryType::APPL_FLASH || memoryType == Avr8MemoryType::BOOT_FLASH || memoryType == Avr8MemoryType::EEPROM_ATOMIC || memoryType == Avr8MemoryType::EEPROM_PAGE ; } TargetMemoryAddress EdbgAvr8Interface::alignMemoryAddress(Avr8MemoryType memoryType, TargetMemoryAddress address) { auto alignTo = std::uint16_t{1}; switch (memoryType) { case Avr8MemoryType::FLASH_PAGE: case Avr8MemoryType::SPM: case Avr8MemoryType::APPL_FLASH: case Avr8MemoryType::BOOT_FLASH: { /* * Although the EDBG documentation claims any number of bytes can be accessed via the FLASH_PAGE mem * type, when using the UPDI config variant, this isn't strictly true. * * When writing to flash on UPDI targets, we MUST page align the write operations. And we cannot word * align them - we've tried only word aligning them - the debug tool reports a "Too many or too few * bytes" error. */ alignTo = static_cast(this->session.programMemorySegment.pageSize.value()); break; } case Avr8MemoryType::EEPROM_ATOMIC: case Avr8MemoryType::EEPROM_PAGE: { alignTo = static_cast(this->session.eepromMemorySegment.pageSize.value()); break; } default: { break; } } if ((address % alignTo) != 0) { return (address / alignTo) * alignTo; } return address; } TargetMemorySize EdbgAvr8Interface::alignMemoryBytes(Avr8MemoryType memoryType, TargetMemorySize bytes) { auto alignTo = std::uint16_t{1}; switch (memoryType) { case Avr8MemoryType::FLASH_PAGE: case Avr8MemoryType::SPM: case Avr8MemoryType::APPL_FLASH: case Avr8MemoryType::BOOT_FLASH: { // See comment in EdbgAvr8Interface::alignMemoryAddress() alignTo = static_cast(this->session.programMemorySegment.pageSize.value()); break; } case Avr8MemoryType::EEPROM_ATOMIC: case Avr8MemoryType::EEPROM_PAGE: { alignTo = static_cast(this->session.eepromMemorySegment.pageSize.value()); break; } default: { break; } } if ((bytes % alignTo) != 0) { return static_cast(std::ceil( static_cast(bytes) / static_cast(alignTo) ) * alignTo); } return bytes; } TargetMemorySize EdbgAvr8Interface::maximumMemoryAccessSize(Avr8MemoryType memoryType) { if ( memoryType == Avr8MemoryType::FLASH_PAGE || memoryType == Avr8MemoryType::APPL_FLASH || memoryType == Avr8MemoryType::BOOT_FLASH || (memoryType == Avr8MemoryType::SPM && this->session.configVariant == Avr8ConfigVariant::MEGAJTAG) ) { // These flash memory types require single page access. return this->session.programMemorySegment.pageSize.value(); } if (memoryType == Avr8MemoryType::EEPROM_ATOMIC || memoryType == Avr8MemoryType::EEPROM_PAGE) { // These EEPROM memory types requires single page access. return this->session.eepromMemorySegment.pageSize.value(); } if (this->maximumMemoryAccessSizePerRequest.has_value()) { // There is a memory access size limit for this entire EdbgAvr8Interface instance return *(this->maximumMemoryAccessSizePerRequest); } /* * EDBG AVR8 debug tools behave in a really weird way when receiving or responding with more than two packets * for a single memory access command. The data they read/write in this case appears to be wrong. * * To address this, we make sure we only issue memory access commands that will result in no more than two * packets being sent to and from the debug tool. * * The -30 is to accommodate for the bytes in the command that are not part of the main payload of the command. */ return static_cast((this->edbgInterface->getUsbHidInputReportSize() - 30) * 2); } TargetMemoryBuffer EdbgAvr8Interface::readMemory( Avr8MemoryType type, TargetMemoryAddress startAddress, TargetMemorySize bytes, const std::set& excludedAddresses ) { if (type == Avr8MemoryType::FUSES && this->session.configVariant == Avr8ConfigVariant::DEBUG_WIRE) { throw Exception{"Cannot access AVR fuses via the debugWIRE interface"}; } const auto managingProgrammingMode = type == Avr8MemoryType::FUSES && !this->programmingModeEnabled; if (managingProgrammingMode) { this->enableProgrammingMode(); } if (!excludedAddresses.empty() && (this->avoidMaskedMemoryRead || type != Avr8MemoryType::SRAM)) { /* * Driver-side masked memory read. * * Split the read into numerous reads, whenever we encounter an excluded address. * * All values for bytes located at excluded addresses will be returned as 0x00 - this mirrors the behaviour * of the masked read memory EDBG command. */ auto output = TargetMemoryBuffer{}; output.reserve(bytes); auto segmentStartAddress = startAddress; const auto endAddress = startAddress + bytes - 1; for (const auto excludedAddress : excludedAddresses) { if (excludedAddress < startAddress || excludedAddress > endAddress) { // This excluded address is outside the range from which we are reading, so it can be ignored. continue; } const auto segmentSize = excludedAddress - segmentStartAddress; if (segmentSize > 0) { auto segmentBuffer = this->readMemory(type, segmentStartAddress, segmentSize); std::move(segmentBuffer.begin(), segmentBuffer.end(), std::back_inserter(output)); } output.emplace_back(0x00); segmentStartAddress = excludedAddress + 1; } // Read final segment const auto finalReadBytes = (endAddress - segmentStartAddress) + 1; if (finalReadBytes > 0) { auto segmentBuffer = this->readMemory(type, segmentStartAddress, finalReadBytes); std::move(segmentBuffer.begin(), segmentBuffer.end(), std::back_inserter(output)); } if (managingProgrammingMode) { this->disableProgrammingMode(); } return output; } if (this->alignmentRequired(type)) { const auto alignedStartAddress = this->alignMemoryAddress(type, startAddress); const auto alignedBytes = this->alignMemoryBytes(type, bytes + (startAddress - alignedStartAddress)); if (alignedStartAddress != startAddress || alignedBytes != bytes) { auto memoryBuffer = this->readMemory(type, alignedStartAddress, alignedBytes, excludedAddresses); const auto offset = memoryBuffer.begin() + (startAddress - alignedStartAddress); auto output = TargetMemoryBuffer{}; output.reserve(bytes); std::move(offset, offset + bytes, std::back_inserter(output)); return output; } } const auto maximumReadSize = this->maximumMemoryAccessSize(type); if (bytes > maximumReadSize) { auto output = TargetMemoryBuffer{}; output.reserve(bytes); while (output.size() < bytes) { const auto bytesToRead = std::min( static_cast(bytes - output.size()), maximumReadSize ); auto data = this->readMemory( type, static_cast(startAddress + output.size()), bytesToRead, excludedAddresses ); std::move(data.begin(), data.end(), std::back_inserter(output)); } return output; } const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame( ReadMemory{type, startAddress, bytes, excludedAddresses} ); if (managingProgrammingMode) { this->disableProgrammingMode(); } if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Read memory command failed", responseFrame}; } const auto data = responseFrame.getMemoryData(); if (data.size() != bytes) { throw Avr8CommandFailure{"Unexpected number of bytes returned from EDBG debug tool"}; } return data; } void EdbgAvr8Interface::writeMemory( Avr8MemoryType type, TargetMemoryAddress startAddress, const TargetMemoryBuffer& buffer ) { if (type == Avr8MemoryType::FUSES && this->session.configVariant == Avr8ConfigVariant::DEBUG_WIRE) { throw Exception{"Cannot access AVR fuses via the debugWIRE interface"}; } const auto managingProgrammingMode = type == Avr8MemoryType::FUSES && !this->programmingModeEnabled; if (managingProgrammingMode) { this->enableProgrammingMode(); } const auto bytes = static_cast(buffer.size()); if (this->alignmentRequired(type)) { const auto alignedStartAddress = this->alignMemoryAddress(type, startAddress); const auto alignedBytes = this->alignMemoryBytes(type, bytes + (startAddress - alignedStartAddress)); if (alignedStartAddress != startAddress || alignedBytes != bytes) { /* * We can't just forward the memory type to readMemory(), because some memory types (such as * EEPROM_ATOMIC) can only be used for writing. */ auto alignedBuffer = this->readMemory( type == Avr8MemoryType::EEPROM_ATOMIC ? Avr8MemoryType::EEPROM : type, alignedStartAddress, alignedBytes ); assert(alignedBuffer.size() >= buffer.size()); const auto offset = alignedBuffer.begin() + (startAddress - alignedStartAddress); std::copy(buffer.begin(), buffer.end(), offset); return this->writeMemory(type, alignedStartAddress, alignedBuffer); } } const auto maximumWriteSize = this->maximumMemoryAccessSize(type); if (buffer.size() > maximumWriteSize) { auto bytesWritten = TargetMemorySize{0}; while (bytesWritten < buffer.size()) { const auto chunkSize = std::min( static_cast(buffer.size() - bytesWritten), maximumWriteSize ); this->writeMemory( type, startAddress + bytesWritten, TargetMemoryBuffer{buffer.begin() + bytesWritten, buffer.begin() + bytesWritten + chunkSize} ); bytesWritten += chunkSize; } return; } const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame( WriteMemory{type, startAddress, buffer} ); // We must disable and re-enable programming mode, in order for the changes to the fuse bit to take effect. if (type == Avr8MemoryType::FUSES) { this->disableProgrammingMode(); if (!managingProgrammingMode) { this->enableProgrammingMode(); } } if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Write memory command failed", responseFrame}; } } void EdbgAvr8Interface::refreshTargetState() { const auto avrEvent = this->getAvrEvent(); if (avrEvent != nullptr && avrEvent->eventId == AvrEventId::AVR8_BREAK_EVENT) { auto* breakEvent = dynamic_cast(avrEvent.get()); if (breakEvent == nullptr) { throw Exception{"Failed to process AVR8 break event"}; } this->cachedExecutionState = TargetExecutionState::STOPPED; return; } if (this->cachedExecutionState != TargetExecutionState::STEPPING) { this->cachedExecutionState = TargetExecutionState::RUNNING; } } void EdbgAvr8Interface::disableDebugWire() { const auto responseFrame = this->edbgInterface->sendAvrCommandFrameAndWaitForResponseFrame(DisableDebugWire{}); if (responseFrame.id == Avr8ResponseId::FAILED) { throw Avr8CommandFailure{"AVR8 Disable debugWIRE command failed", responseFrame}; } } void EdbgAvr8Interface::waitForStoppedEvent() { auto breakEvent = this->waitForAvrEvent(); if (breakEvent == nullptr) { throw Exception{"Failed to receive break event for AVR8 target"}; } this->cachedExecutionState = TargetExecutionState::STOPPED; } }